This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331024 #11 May 28 2021 00:56:14 %S A331024 1,1,1,1,1,1,1,2,1,1,1,3,1,1,1,2,1,3,1,3,1,1,1,5,1,1,2,3,1,1,1,3,1,1, %T A331024 1,5,1,1,1,5,1,1,1,3,3,1,1,7,1,3,1,3,1,5,1,5,1,1,1,9,1,1,3,4,1,1,1,3, %U A331024 1,1,1,9,1,1,3,3,1,1,1,7,2,1,1,9,1,1,1,5,1,9,1,3,1,1,1,10,1,3,3,5,1,1,1,5,1 %N A331024 Denominator: factorizations divided by strict factorizations A001055(n)/A045778(n). %C A331024 A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively. %H A331024 Antti Karttunen, <a href="/A331024/b331024.txt">Table of n, a(n) for n = 1..65537</a> %H A331024 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A331024 a(2^n) = A330995(n). %t A331024 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A331024 Table[Length[facs[n]]/Length[Select[facs[n],UnsameQ@@#&]],{n,100}]//Denominator %o A331024 (PARI) %o A331024 A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s)); %o A331024 A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d<n), A045778(n/d, d-1)))); %o A331024 A331024(n) = denominator(A001055(n)/A045778(n)); \\ _Antti Karttunen_, May 27 2021 %Y A331024 Positions of 1's include all elements of A001248 as well as A005117. The first position of a 1 that is not in A167207 is 128. %Y A331024 The numerators are A331023. %Y A331024 The rounded quotients are A331048. %Y A331024 The same for integer partitions is A330995. %Y A331024 Cf. A001055, A005117, A045778, A045779, A045780, A045782, A045783, A325755, A326028, A326622, A328966, A330972, A330977, A330991. %K A331024 nonn,frac %O A331024 1,8 %A A331024 _Gus Wiseman_, Jan 08 2020 %E A331024 More terms from _Antti Karttunen_, May 27 2021