cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331028 Partition the terms of the harmonic series into groups sequentially so that the sum of each group is equal to or minimally greater than 1; then a(n) is the number of terms in the n-th group.

This page as a plain text file.
%I A331028 #34 May 11 2020 01:18:00
%S A331028 1,3,8,22,60,163,443,1204,3273,8897,24184,65739,178698,485751,1320408,
%T A331028 3589241,9756569,26521104,72091835,195965925,532690613,1448003214,
%U A331028 3936080824,10699376979,29083922018,79058296722,214902731368,584166189564,1587928337892,4316436745787
%N A331028 Partition the terms of the harmonic series into groups sequentially so that the sum of each group is equal to or minimally greater than 1; then a(n) is the number of terms in the n-th group.
%C A331028 a(n) is equal to A024581(n) through a(10), and grows very similarly for n > 10.
%C A331028 Let b(n) = Sum_{j=1..n} a(n); then for n >= 2 it appears that b(n) = round((b(n-1) + 1/2)*e). Cf. A331030. - _Jon E. Schoenfield_, Jan 14 2020
%F A331028 a(n) = min(p): Sum_{b=r+1..p+r} 1/b >= 1, r = Sum_{k=1..n-1} a(k), a(1) = 1.
%e A331028 a(1)=1 because 1 >= 1,
%e A331028 a(2)=3 because 1/2 + 1/3 + 1/4 = 1.0833... >= 1, etc.
%o A331028 (Python)
%o A331028 x = 0.0
%o A331028 y = 0.0
%o A331028 for i in range(1,100000000000000000000000):
%o A331028   y += 1
%o A331028   x = x + 1/i
%o A331028   if x >= 1:
%o A331028     print(y)
%o A331028     y = 0
%o A331028     x = 0
%o A331028 (PARI) default(realprecision, 10^5); e=exp(1);
%o A331028 lista(nn) = {my(r=1); print1(r); for(n=2, nn, print1(", ", -r+(r=floor(e*r+(e+1)/2+(e-1/e)/(24*(r+1/2)))))); } \\ _Jinyuan Wang_, Mar 31 2020
%Y A331028 Cf. A004080, A024581, A136616, A331030.
%Y A331028 Some sequences in the same spirit as this: A002387, A004080, A055980, A115515.
%K A331028 nonn
%O A331028 1,2
%A A331028 _Alejandro Argüelles Trujillo_ and _Pablo Hueso Merino_, Jan 07 2020
%E A331028 a(20)-a(21) from _Giovanni Resta_, Jan 14 2020
%E A331028 More terms from _Jinyuan Wang_, Mar 31 2020