cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331077 a(n) = Sum_{k = 1..n} [d(k)*d_3(k)], where d = A000005, d_3 = A007425.

Original entry on oeis.org

1, 7, 13, 31, 37, 73, 79, 119, 137, 173, 179, 287, 293, 329, 365, 440, 446, 554, 560, 668, 704, 740, 746, 986, 1004, 1040, 1080, 1188, 1194, 1410, 1416, 1542, 1578, 1614, 1650, 1974, 1980, 2016, 2052, 2292, 2298, 2514, 2520, 2628, 2736, 2772, 2778, 3228, 3246, 3354, 3390, 3498, 3504, 3744, 3780, 4020, 4056
Offset: 1

Views

Author

N. J. A. Sloane, Jan 10 2020

Keywords

Comments

For background references see A330570.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)^2*(e+2)/2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[s, 100]] (* Amiram Eldar, Apr 19 2024 *)
  • PARI
    lista(nmax) = {my(s = 0); for(n = 1, nmax, s += vecprod(apply(e -> (e+1)^2*(e+2)/2, factor(n)[,2])); print1(s, ", "));} \\ Amiram Eldar, Apr 19 2024

Formula

a(n) ~ c * n * log(n)^5 /5!, where c = Product_{p prime} ((1-1/p)^2*(1+2/p)) = 0.286747428434478734107... (Titchmarsh, 1942). - Amiram Eldar, Apr 19 2024