cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331085 Positive negaFibonacci-Niven numbers: positive numbers divisible by the number of terms in their negaFibonacci representation (A331083).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 12, 13, 14, 18, 24, 26, 27, 30, 34, 36, 48, 55, 60, 64, 68, 69, 72, 78, 84, 86, 87, 88, 89, 90, 93, 94, 96, 99, 100, 102, 108, 110, 112, 116, 120, 140, 144, 150, 155, 156, 160, 172, 176, 177, 178, 180, 183, 184, 188, 192, 195, 196, 200, 204
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

The k-th Fibonacci number is a term for all odd k, since its negaFibonacci representation is 1 followed by (k-1) zeros.

Examples

			4 is a term since the negaFibonacci representation of 4 is 10010 whose sum of digits is 1 + 0 + 0 + 1 + 0 = 2 which is a divisor of 4.
		

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s]; Select[Range[200], Divisible[#, negaFibTermsNum[#]] &]

A339213 Phi-base self numbers: positive numbers not of the form k + A055778(k).

Original entry on oeis.org

1, 3, 6, 10, 12, 15, 19, 23, 26, 30, 32, 38, 41, 43, 52, 55, 59, 61, 64, 68, 72, 75, 79, 81, 86, 89, 91, 97, 101, 104, 108, 110, 115, 118, 120, 126, 131, 135, 137, 140, 144, 148, 151, 155, 157, 163, 166, 168, 177, 180, 184, 186, 189, 193, 197, 200, 204, 206, 213
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2020

Keywords

Comments

Analogous to self numbers (A003052) using base phi (A130600) instead of base 10.

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    s[1] = 2; s[n_] := n + Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[Log[GoldenRatio, n]]][[1]]; m = 220; Complement[Range[m], Array[s, m]]

A331088 Positive numbers k such that -k is a negative negaFibonacci-Niven number, i.e., divisible by the number of terms in its negaFibonacci representation (A331084).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 15, 16, 18, 20, 21, 22, 24, 27, 30, 36, 42, 44, 45, 48, 50, 51, 54, 55, 56, 57, 58, 60, 66, 72, 75, 76, 80, 84, 90, 92, 96, 100, 104, 105, 108, 110, 111, 112, 115, 116, 120, 124, 126, 128, 129, 132, 136, 138, 141, 142, 144, 150, 152, 153, 156, 168, 170, 172, 175, 176, 180, 184, 186, 190, 192, 196, 198
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

The k-th Fibonacci number is a term for all even k, since its negaFibonacci representation is 1 followed by (k-1) zeros.

Examples

			4 is a term since the negaFibonacci representation of -4 is 1010 whose sum of digits is 1 + 0 + 1 + 0 = 2 which is a divisor of 4.
		

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    Select[Range[200], Divisible[#, negaFibTermsNum[-#]] &]

A331084 The number of terms in the negaFibonacci representation of -n (A215023).

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 1, 2, 3, 2, 3, 4, 3, 3, 2, 3, 3, 2, 2, 1, 2, 3, 2, 3, 4, 3, 3, 2, 3, 4, 3, 4, 5, 4, 4, 3, 4, 4, 3, 3, 2, 3, 4, 3, 4, 4, 3, 3, 2, 3, 3, 2, 2, 1, 2, 3, 2, 3, 4, 3, 3, 2, 3, 4, 3, 4, 5, 4, 4, 3, 4, 4, 3, 3, 2, 3, 4, 3, 4, 5, 4, 4, 3, 4, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

The Fibonacci numbers F(2*n - 1) are the indices of records of this sequence.

Examples

			The negaFibonacci representation of 2 is A215023(2) = 1001, thus a(2) = 1 + 0 + 0 + 1 = 2.
		

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; nf[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s]; a[n_] := nf[-n]; Array[a, 100]

Formula

a(A000045(2*n)) = 1.
a(A000045(2*n - 1)) = n.
Showing 1-4 of 4 results.