A331085 Positive negaFibonacci-Niven numbers: positive numbers divisible by the number of terms in their negaFibonacci representation (A331083).
1, 2, 4, 5, 6, 9, 10, 12, 13, 14, 18, 24, 26, 27, 30, 34, 36, 48, 55, 60, 64, 68, 69, 72, 78, 84, 86, 87, 88, 89, 90, 93, 94, 96, 99, 100, 102, 108, 110, 112, 116, 120, 140, 144, 150, 155, 156, 160, 172, 176, 177, 178, 180, 183, 184, 188, 192, 195, 196, 200, 204
Offset: 1
Examples
4 is a term since the negaFibonacci representation of 4 is 10010 whose sum of digits is 1 + 0 + 0 + 1 + 0 = 2 which is a divisor of 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s]; Select[Range[200], Divisible[#, negaFibTermsNum[#]] &]
Comments