A331088 Positive numbers k such that -k is a negative negaFibonacci-Niven number, i.e., divisible by the number of terms in its negaFibonacci representation (A331084).
1, 2, 3, 4, 6, 8, 12, 15, 16, 18, 20, 21, 22, 24, 27, 30, 36, 42, 44, 45, 48, 50, 51, 54, 55, 56, 57, 58, 60, 66, 72, 75, 76, 80, 84, 90, 92, 96, 100, 104, 105, 108, 110, 111, 112, 115, 116, 120, 124, 126, 128, 129, 132, 136, 138, 141, 142, 144, 150, 152, 153, 156, 168, 170, 172, 175, 176, 180, 184, 186, 190, 192, 196, 198
Offset: 1
Examples
4 is a term since the negaFibonacci representation of -4 is 1010 whose sum of digits is 1 + 0 + 1 + 0 = 2 which is a divisor of 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s]; Select[Range[200], Divisible[#, negaFibTermsNum[-#]] &]
Comments