cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331089 Positive numbers k such that -k and -(k + 1) are both negative negaFibonacci-Niven numbers (A331088).

Original entry on oeis.org

1, 2, 3, 15, 20, 21, 44, 50, 54, 55, 56, 57, 75, 104, 110, 111, 115, 128, 141, 152, 175, 207, 264, 291, 304, 308, 335, 351, 363, 376, 377, 380, 392, 398, 399, 435, 452, 455, 534, 584, 594, 605, 623, 654, 735, 740, 744, 753, 795, 804, 875, 884, 897, 924, 964, 968
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

The Fibonacci numbers F(6*k + 2) and F(6*k + 4) are terms.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[-n]];
    nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0;
    k = nConsec+1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq