A331090 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negaFibonacci-Niven numbers (A331088).
1, 2, 20, 54, 55, 56, 110, 376, 398, 974, 986, 1084, 1744, 2464, 2524, 3304, 3870, 5223, 5718, 6095, 6124, 6184, 6663, 6764, 6844, 7142, 7684, 9035, 9124, 10590, 11598, 11975, 12606, 13444, 13504, 14284, 14915, 17164, 17643, 17710, 17714, 17824, 17884, 18698, 18905, 19494, 23191, 24243, 24785, 25542, 26382, 27390, 29644, 34278, 35464
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s]; negFibQ[n_] := Divisible[n, negaFibTermsNum[-n]]; nConsec = 3; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq
Comments