cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331092 Positive numbers k such that k and k + 1 are both positive negaFibonacci-Niven numbers (A331085) and -k and -(k + 1) are both negative negaFibonacci-Niven numbers (A331088).

Original entry on oeis.org

1, 744, 875, 924, 1115, 1575, 1704, 1955, 2904, 3815, 5495, 5844, 6125, 6335, 6824, 7136, 7314, 8154, 8225, 8360, 8784, 9414, 10535, 10744, 10935, 11976, 12047, 13194, 13404, 13475, 18024, 19368, 19943, 20615, 21791, 22224, 22560, 23807, 24143, 24576, 25752, 26424, 26999
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

Positive numbers k such that both k and k + 1 are in A331091.

Crossrefs

Intersection of A331086 and A331089.

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[n]] && Divisible[n, negaFibTermsNum[-n]];
    nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 45, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq

A331827 Positive negabinary-Niven numbers k (A331728) such that -k is a negative negabinary-Niven number (A331819).

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 28, 30, 32, 33, 36, 40, 42, 48, 54, 56, 60, 63, 64, 66, 68, 72, 78, 80, 84, 90, 96, 100, 102, 108, 112, 114, 120, 124, 126, 128, 129, 132, 136, 138, 140, 144, 150, 156, 160, 162, 168, 174, 175, 180, 186, 192, 198, 200
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2020

Keywords

Comments

Positive numbers k that are divisible by the sums of digits in the negabinary representations of both k and -k.
All the powers of 2 above 1 are terms.

Crossrefs

Intersection of A331728 and A331819.

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; seqQ[n_] := And @@ (Divisible[n, negaBinWt[#]] & /@ {-n, n}); Select[Range[200], seqQ]
Showing 1-2 of 2 results.