A331092 Positive numbers k such that k and k + 1 are both positive negaFibonacci-Niven numbers (A331085) and -k and -(k + 1) are both negative negaFibonacci-Niven numbers (A331088).
1, 744, 875, 924, 1115, 1575, 1704, 1955, 2904, 3815, 5495, 5844, 6125, 6335, 6824, 7136, 7314, 8154, 8225, 8360, 8784, 9414, 10535, 10744, 10935, 11976, 12047, 13194, 13404, 13475, 18024, 19368, 19943, 20615, 21791, 22224, 22560, 23807, 24143, 24576, 25752, 26424, 26999
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s]; negFibQ[n_] := Divisible[n, negaFibTermsNum[n]] && Divisible[n, negaFibTermsNum[-n]]; nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 45, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq
Comments