This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331102 #10 Jan 12 2020 12:47:19 %S A331102 0,0,2,3,0,5,2,7,0,0,2,11,0,13,2,7,0,17,2,19,0,5,2,23,0,0,2,11,0,29,2, %T A331102 31,0,0,2,3,0,37,2,7,0,41,2,43,0,13,2,47,0,17,2,19,0,53,2,23,0,0,2,59, %U A331102 0,61,2,31,0,0,2,67,0,5,2,71,0,73,2,11,0,13,2 %N A331102 a(n) is the greatest prime number of the form n mod (2^k) for some k > 0, or 0 if no such prime number exists. %C A331102 In other words, a(n) is the largest binary prime suffix of n, or 0 if no such suffix exists. %H A331102 Rémy Sigrist, <a href="/A331102/b331102.txt">Table of n, a(n) for n = 0..8192</a> %F A331102 a(n) <= n with equality iff n = 0 or n is a prime number. %e A331102 For n = 45: %e A331102 - we have: %e A331102 k 45 mod (2^k) prime? %e A331102 -- ------------ ------ %e A331102 1 1 no %e A331102 2 1 no %e A331102 3 5 yes %e A331102 4 13 yes %e A331102 5 13 yes %e A331102 >5 45 no %e A331102 - hence a(45) = 13. %o A331102 (PARI) a(n, base=2) = my (d=digits(n, base), s); for (k=1, #d, if (isprime(s=fromdigits(d[k..#d], base)), return (s))); 0 %Y A331102 Cf. A331097 (decimal analog). %K A331102 nonn,look,base %O A331102 0,3 %A A331102 _Rémy Sigrist_, Jan 09 2020