cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331109 The number of dual-Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the dual Zeckendorf expansion (A104326) of each s(i) contains only terms that are in the dual Zeckendorf expansion of r(i).

Table of values

n a(n)
1 1
2 2
3 2
4 2
5 2
6 4
7 2
8 4
9 2
10 4
11 2
12 4
13 2
14 4
15 4
16 4
17 2
18 4
19 2
20 4
21 4
22 4
23 2
24 8
25 2
26 4
27 4
28 4
29 2
30 8
31 2
32 4
33 4
34 4
35 4
36 4
37 2
38 4
39 4
40 8
41 2
42 8
43 2
44 4
45 4
46 4
47 2
48 8
49 2
50 4
51 4
52 4
53 2
54 8
55 4
56 8
57 4
58 4
59 2
60 8
61 2
62 4
63 4
64 8
65 4
66 8
67 2
68 4
69 4
70 8
71 2
72 8
73 2
74 4
75 4
76 4
77 4
78 8
79 2
80 8
81 4
82 4
83 2
84 8
85 4
86 4
87 4

List of values

[1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 8, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4]