cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331143 Number of coincidence site modules of icosian ring of index n.

This page as a plain text file.
%I A331143 #24 Feb 16 2021 13:14:23
%S A331143 1,0,0,25,36,0,0,0,100,0,288,0,0,0,0,410,0,0,800,900,0,0,0,0,912,0,0,
%T A331143 0,1800,0,2048,0,0,0,0,2500,0,0,0,0,3528,0,0,7200,3600,0,0,0,2500,0,0,
%U A331143 0,0,0,10368,0,0,0,7200,0,7688,0,0,6600,0,0,0,0,0,0
%N A331143 Number of coincidence site modules of icosian ring of index n.
%H A331143 Michael Baake and Peter Zeiner, <a href="https://doi.org/10.1080/14786430701846206">Coincidences in 4 dimensions</a>, Phil. Mag. 88 (2008), 2025-2032; arXiv:<a href="https://arxiv.org/abs/0712.0363">0712.0363</a> [math.MG]. See Section 4. Caution: there is a typo in a(19) here and in other papers.
%H A331143 Michael Baake and Peter Zeiner, <a href="https://doi.org/10.1017/9781139033862.005">Geometric Enumeration Problems for Lattices and Embedded Z-Modules</a>, in: <a href="http://www.aperiodicorder.org/">Aperiodic Order</a>, vol. 2: Crystallography and Almost Periodicity, eds. M. Baake and U. Grimm, Cambridge University Press, Cambridge (2017), pp. 73-172; arXiv:<a href="https://arxiv.org/abs/1709.07317">1709.07317</a> [math.MG], 2017. See Theorem 3.11.12 (or Theorem 11.12 in the arXiv version).
%H A331143 Peter Zeiner, <a href="https://core.ac.uk/display/211846842">Coincidence Site Lattices and Coincidence Site Modules</a>, 2015. See p. 83.
%F A331143 See Zeiner (2015) for the formula and the Dirichlet g.f. (but beware of the typo in the 19th term).
%t A331143 h[x_, 0] := 1;
%t A331143 h[x_, r_] := (x^(2 r + 1) + x^(2 r - 2) - 2 x^Quotient[r - 1, 2] If[EvenQ[r], (1 + x^2)/(1 + x), 1]) (x + 1)^2/(x^3 - 1);
%t A331143 apr[5, r_] := h[5, r];
%t A331143 apr[p_?(Abs@Mod[#, 5, -1] == 1 &), r_] := Sum[h[p, r - s] h[p, s], {s, 0, r}];
%t A331143 apr[p_, r_] := If[OddQ[r], 0, h[p^2, r/2]];
%t A331143 a[1] = 1;
%t A331143 a[n_] := Product[apr @@ pr, {pr, FactorInteger[n]}];
%t A331143 Table[a[n], {n, 100}]
%t A331143 (* _Andrey Zabolotskiy_, Feb 16 2021 *)
%Y A331143 Cf. A031366.
%K A331143 nonn,mult
%O A331143 1,4
%A A331143 _N. J. A. Sloane_, Jan 12 2020
%E A331143 New name, a(19) corrected, a(29) and beyond added by _Andrey Zabolotskiy_, Feb 16 2021