cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331191 Numbers whose dual Zeckendorf representations (A104326) are palindromic.

Original entry on oeis.org

0, 1, 3, 4, 6, 11, 12, 16, 19, 22, 32, 33, 38, 42, 48, 53, 64, 71, 87, 88, 98, 106, 110, 118, 124, 134, 142, 148, 174, 194, 205, 231, 232, 245, 255, 271, 284, 288, 304, 317, 323, 336, 346, 362, 375, 402, 420, 462, 474, 516, 548, 566, 608, 609, 635, 656, 666, 687
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2020

Keywords

Comments

Pairs of numbers of the form {F(2*k-1)-2, F(2*k-1)-1}, for k >= 2, where F(k) is the k-th Fibonacci number, are consecutive terms in this sequence: {0, 1}, {3, 4}, {11, 12}, {32, 33}, ... - Amiram Eldar, Sep 03 2022

Examples

			4 is a term since its dual Zeckendorf representation, 101, is palindromic.
		

Crossrefs

Programs

  • Mathematica
    mirror[dig_, s_] := Join[dig, s, Reverse[dig]];
    select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &];
    fib[dig_] := Plus @@ (dig * Fibonacci[Range[2, Length[dig] + 1]]);
    pals = Join[{{}}, Rest[Select[IntegerDigits[Range[0, 2^6 - 1], 2], SequenceCount[#, {0, 0}] == 0 &]]];
    Union@Join[{0}, fib /@ Join[mirror[#, {}] & /@ (select[pals, 0]), mirror[#, {0}] & /@ (select[pals, 0]), mirror[#, {1}] & /@ pals]]