cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331192 Numbers whose Zeckendorf representation (A014417) and dual Zeckendorf representation (A104326) are both palindromic.

This page as a plain text file.
%I A331192 #4 Jan 11 2020 21:51:34
%S A331192 0,1,4,6,12,22,33,64,88,174,232,462,609,1216,1596,3190,4180,8358,
%T A331192 10945,21888,28656,57310,75024,150046,196417,392832,514228,1028454,
%U A331192 1346268,2692534,3524577,7049152,9227464,18454926,24157816,48315630,63245985,126491968,165580140
%N A331192 Numbers whose Zeckendorf representation (A014417) and dual Zeckendorf representation (A104326) are both palindromic.
%C A331192 Apparently union of numbers of the form F(2*k - 1) - 1 (k > 0) and numbers of the form 2 * F(2*k - 1) - 4 (k > 1), where F(m) is the m-th Fibonacci number.
%C A331192 The numbers of the form F(2*k - 1) - 1 have the same Zeckendorf and dual Zeckendorf representations. For k > 1 the representation is 1010...01, k-1 1's interleaved with k-2 0's.
%e A331192 6 is a term since its Zeckendorf representation, 1001, and its dual Zeckendorf representation, 111, are both palindromic.
%t A331192 mirror[dig_, s_] := Join[dig, s, Reverse[dig]];
%t A331192 select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &];
%t A331192 fib[dig_] := Plus @@ (dig*Fibonacci[Range[2, Length[dig] + 1]]);
%t A331192 ndig = 12; pals1 = Rest[IntegerDigits /@ FromDigits /@ Select[Tuples[{0, 1}, ndig], SequenceCount[#, {1, 1}] == 0 &]];
%t A331192 zeckPals = Union @ Join[{0, 1}, fib /@ Join[mirror[#, {}] & /@ (select[pals1, 1]), mirror[#, {1}] & /@ (select[pals1, 1]), mirror[#, {0}] & /@ pals1]];
%t A331192 pals2 = Join[{{}}, Rest[Select[IntegerDigits[Range[0, 2^ndig - 1], 2], SequenceCount[#, {0, 0}] == 0 &]]];
%t A331192 dualZeckPals = Union@Join[{0}, fib /@ Join[mirror[#, {}] & /@ (select[pals2, 0]), mirror[#, {0}] & /@ (select[pals2, 0]), mirror[#, {1}] & /@ pals2]];
%t A331192 Intersection[zeckPals, dualZeckPals]
%Y A331192 Intersection of A094202 and A331191.
%Y A331192 Cf. A000045, A000071, A002113, A006995, A014190, A027941, A048268, A060792, A095309, A104326, A329459.
%K A331192 nonn,base
%O A331192 1,3
%A A331192 _Amiram Eldar_, Jan 11 2020