This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331192 #4 Jan 11 2020 21:51:34 %S A331192 0,1,4,6,12,22,33,64,88,174,232,462,609,1216,1596,3190,4180,8358, %T A331192 10945,21888,28656,57310,75024,150046,196417,392832,514228,1028454, %U A331192 1346268,2692534,3524577,7049152,9227464,18454926,24157816,48315630,63245985,126491968,165580140 %N A331192 Numbers whose Zeckendorf representation (A014417) and dual Zeckendorf representation (A104326) are both palindromic. %C A331192 Apparently union of numbers of the form F(2*k - 1) - 1 (k > 0) and numbers of the form 2 * F(2*k - 1) - 4 (k > 1), where F(m) is the m-th Fibonacci number. %C A331192 The numbers of the form F(2*k - 1) - 1 have the same Zeckendorf and dual Zeckendorf representations. For k > 1 the representation is 1010...01, k-1 1's interleaved with k-2 0's. %e A331192 6 is a term since its Zeckendorf representation, 1001, and its dual Zeckendorf representation, 111, are both palindromic. %t A331192 mirror[dig_, s_] := Join[dig, s, Reverse[dig]]; %t A331192 select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &]; %t A331192 fib[dig_] := Plus @@ (dig*Fibonacci[Range[2, Length[dig] + 1]]); %t A331192 ndig = 12; pals1 = Rest[IntegerDigits /@ FromDigits /@ Select[Tuples[{0, 1}, ndig], SequenceCount[#, {1, 1}] == 0 &]]; %t A331192 zeckPals = Union @ Join[{0, 1}, fib /@ Join[mirror[#, {}] & /@ (select[pals1, 1]), mirror[#, {1}] & /@ (select[pals1, 1]), mirror[#, {0}] & /@ pals1]]; %t A331192 pals2 = Join[{{}}, Rest[Select[IntegerDigits[Range[0, 2^ndig - 1], 2], SequenceCount[#, {0, 0}] == 0 &]]]; %t A331192 dualZeckPals = Union@Join[{0}, fib /@ Join[mirror[#, {}] & /@ (select[pals2, 0]), mirror[#, {0}] & /@ (select[pals2, 0]), mirror[#, {1}] & /@ pals2]]; %t A331192 Intersection[zeckPals, dualZeckPals] %Y A331192 Intersection of A094202 and A331191. %Y A331192 Cf. A000045, A000071, A002113, A006995, A014190, A027941, A048268, A060792, A095309, A104326, A329459. %K A331192 nonn,base %O A331192 1,3 %A A331192 _Amiram Eldar_, Jan 11 2020