This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331201 #4 Jan 13 2020 09:37:19 %S A331201 6,8,10,12,14,15,16,18,20,21,22,24,26,27,28,30,32,33,34,35,36,38,39, %T A331201 40,42,44,45,46,48,50,51,52,54,55,56,57,58,62,63,65,66,68,69,70,74,75, %U A331201 76,77,78,80,81,82,85,86,87,88,91,92,93,94,95,98,99,100,102 %N A331201 Numbers k such that the number of factorizations of k into distinct factors > 1 is a prime number. %C A331201 First differs from A080257 in lacking 60. %e A331201 Strict factorizations of selected terms: %e A331201 (6) (12) (24) (48) (216) %e A331201 (2*3) (2*6) (3*8) (6*8) (3*72) %e A331201 (3*4) (4*6) (2*24) (4*54) %e A331201 (2*12) (3*16) (6*36) %e A331201 (2*3*4) (4*12) (8*27) %e A331201 (2*3*8) (9*24) %e A331201 (2*4*6) (12*18) %e A331201 (2*108) %e A331201 (3*8*9) %e A331201 (4*6*9) %e A331201 (2*3*36) %e A331201 (2*4*27) %e A331201 (2*6*18) %e A331201 (2*9*12) %e A331201 (3*4*18) %e A331201 (3*6*12) %e A331201 (2*3*4*9) %t A331201 strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; %t A331201 Select[Range[100],PrimeQ[Length[strfacs[#]]]&] %Y A331201 The version for strict integer partitions is A035359. %Y A331201 The version for integer partitions is A046063. %Y A331201 The version for set partitions is A051130. %Y A331201 The non-strict version is A330991. %Y A331201 Factorizations are A001055 with image A045782 and complement A330976. %Y A331201 Strict factorizations are A045778 with image A045779 and complement A330975. %Y A331201 Numbers whose number of strict factorizations is odd are A331230. %Y A331201 Numbers whose number of strict factorizations is even are A331231. %Y A331201 The least number with n strict factorizations is A330974(n). %Y A331201 Cf. A001318, A045780, A318286, A328966, A330992, A330993, A330997, A331023/A331024, A331050, A331051, A331200, A331232. %K A331201 nonn %O A331201 1,1 %A A331201 _Gus Wiseman_, Jan 12 2020