cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331232 Record numbers of factorizations into distinct factors > 1.

This page as a plain text file.
%I A331232 #20 May 22 2025 10:21:48
%S A331232 1,2,3,5,7,9,10,16,18,25,34,38,57,59,67,70,91,100,117,141,161,193,253,
%T A331232 296,306,426,552,685,692,960,1060,1067,1216,1220,1589,1591,1912,2029,
%U A331232 2157,2524,2886,3249,3616,3875,4953,5147,5285,5810,6023,6112,6623,8129
%N A331232 Record numbers of factorizations into distinct factors > 1.
%H A331232 Giovanni Resta, <a href="/A331232/b331232.txt">Table of n, a(n) for n = 1..122</a>
%H A331232 Jun Kyo Kim, <a href="https://doi.org/10.1006/jnth.1998.2238">On highly factorable numbers</a>, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
%F A331232 a(n) = A045778(A331200(n)).
%e A331232 Representatives for the initial records and their strict factorizations:
%e A331232   ()  (6)    (12)   (24)     (48)     (60)      (96)      (120)
%e A331232       (2*3)  (2*6)  (3*8)    (6*8)    (2*30)    (2*48)    (2*60)
%e A331232              (3*4)  (4*6)    (2*24)   (3*20)    (3*32)    (3*40)
%e A331232                     (2*12)   (3*16)   (4*15)    (4*24)    (4*30)
%e A331232                     (2*3*4)  (4*12)   (5*12)    (6*16)    (5*24)
%e A331232                              (2*3*8)  (6*10)    (8*12)    (6*20)
%e A331232                              (2*4*6)  (2*5*6)   (2*6*8)   (8*15)
%e A331232                                       (3*4*5)   (3*4*8)   (10*12)
%e A331232                                       (2*3*10)  (2*3*16)  (3*5*8)
%e A331232                                                 (2*4*12)  (4*5*6)
%e A331232                                                           (2*3*20)
%e A331232                                                           (2*4*15)
%e A331232                                                           (2*5*12)
%e A331232                                                           (2*6*10)
%e A331232                                                           (3*4*10)
%e A331232                                                           (2*3*4*5)
%t A331232 nn=1000;
%t A331232 strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
%t A331232 qv=Table[Length[strfacs[n]],{n,nn}];
%t A331232 Union[qv//.{foe___,x_,y_,afe___}/;x>y:>{foe,x,afe}]
%o A331232 (Python)
%o A331232 def fact(num):
%o A331232     ret = []
%o A331232     temp = num
%o A331232     div = 2
%o A331232     while temp > 1:
%o A331232         while temp % div == 0:
%o A331232             ret.append(div)
%o A331232             temp //= div
%o A331232         div += 1
%o A331232     return ret
%o A331232 def all_partitions(lst):
%o A331232     if lst:
%o A331232         x = lst[0]
%o A331232         for partition in all_partitions(lst[1:]):
%o A331232             yield [x] + partition
%o A331232             for i, _ in enumerate(partition):
%o A331232                 partition[i] *= x
%o A331232                 yield partition
%o A331232                 partition[i] //= x
%o A331232     else:
%o A331232         yield []
%o A331232 best = 0
%o A331232 terms = [0]
%o A331232 q = 2
%o A331232 while len(terms) < 100:
%o A331232     total_set = set()
%o A331232     factors = fact(q)
%o A331232     total_set = set(tuple(sorted(x)) for x in all_partitions(factors) if len(x) == len(set(x)))
%o A331232     if len(total_set) > best:
%o A331232         best = len(total_set)
%o A331232         terms.append(best)
%o A331232         print(q,best)
%o A331232     q += 2#only check evens
%o A331232 print(terms)
%o A331232 #  _David Consiglio, Jr._, Jan 14 2020
%Y A331232 The non-strict version is A272691.
%Y A331232 The first appearance of a(n) in A045778 is at index A331200(n).
%Y A331232 Factorizations are A001055 with image A045782 and complement A330976.
%Y A331232 Strict factorizations are A045778 with image A045779 and complement A330975.
%Y A331232 The least number with n strict factorizations is A330974(n).
%Y A331232 The least number with A045779(n) strict factorizations is A045780(n).
%Y A331232 Cf. A033833, A045783, A325238, A330972, A330973, A330997, A331023/A331024, A331201.
%K A331232 nonn
%O A331232 1,2
%A A331232 _Gus Wiseman_, Jan 12 2020
%E A331232 a(26)-a(37) from _David Consiglio, Jr._, Jan 14 2020
%E A331232 a(38) and beyond from _Giovanni Resta_, Jan 17 2020