cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331236 Total cutting number of all simple connected graphs of order n.

This page as a plain text file.
%I A331236 #14 Dec 19 2024 21:18:26
%S A331236 0,0,1,7,43,302,2622,31129,564452,17585400,1006927107,107458067322
%N A331236 Total cutting number of all simple connected graphs of order n.
%H A331236 F. Harary and P. A. Ostrand, <a href="/A002887/a002887.pdf">How cutting is a cut point?</a>, pp. 147-150 of R. K. Guy et al., editors, Combinatorial Structures and Their Applications (Proceedings Calgary Conference Jun 1969), Gordon and Breach, NY, 1970. [Annotated scan of page 147 only.]
%H A331236 F. Harary and P. A. Ostrand, <a href="/A002887/a002887_1.pdf">How cutting is a cut point?</a>, pp. 147-150 of R. K. Guy et al., editors, Combinatorial Structures and Their Applications (Proceedings Calgary Conference Jun 1969), Gordon and Breach, NY, 1970. [Annotated scan of pages 148, 149 only.]
%H A331236 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a331/A331236.java">Java program</a> (github)
%H A331236 Simon Mukwembi and Senelani Dorothy Hove-Musekwa, <a href="https://doi.org/10.1007/s13226-012-0038-8">On bounds for the cutting number of a graph</a>, Indian J. Pure Appl. Math., 43 (2012), 637-649.
%F A331236 a(n) = Sum_{G} c(G) where the sum is over all graphs G with n vertices and c(G) is the cutting number of G.
%F A331236 a(n) = Sum_{k=0..(n-1)*(n-2)/2} A331422(n, k).
%Y A331236 Cf. A331237 (trees), A331422.
%K A331236 nonn,more
%O A331236 1,4
%A A331236 _Sean A. Irvine_, Jan 13 2020