cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331273 Sum of the iterated exponential totient function (A072911).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 25 2020

Keywords

Comments

Analogous to A092693 with the exponential totient function ephi instead of the Euler totient function phi (A000010).
a(n) = 1 for n > 1 which is cubefree (A004709) and a(n) > 1 for n in A046099.

Examples

			a(8) = ephi(8) + ephi(ephi(8)) = 2 + 1 = 3 (where ephi is A072911).
		

Crossrefs

Programs

  • Mathematica
    ephi[n_] := Times @@ EulerPhi[FactorInteger[n][[;; , 2]]]; s[n_] := Plus @@ FixedPointList[ephi, n] - n - 1; Array[s, 100]