This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331325 #22 Feb 17 2024 03:40:03 %S A331325 1,1,3,15,97,745,6571,65359,723969,8842257,118091251,1712261551, %T A331325 26786070433,449634481465,8059974923547,153634497337455, %U A331325 3102367733191681,66145005096272929,1484586887025099619,34983117545622446287,863397428225495045601,22269844592814969946761 %N A331325 a(n) = n!*[x^n] cosh(x/(1-x))/(1-x). %H A331325 Robert Israel, <a href="/A331325/b331325.txt">Table of n, a(n) for n = 0..443</a> %F A331325 a(n) + A331326(n) = A002720(n). %F A331325 a(n) - A331326(n) = A009940(n). %F A331325 a(n) = Sum_{k=0..n/2} |A021009(n, 2*k)|. %F A331325 a(n) = Sum_{k=0..n} binomial(n, 2*k)*n!/(2*k)!. %F A331325 a(n) = n!*hypergeom([1/2 - n/2, -n/2], [1/2, 1/2, 1], 1/4). %F A331325 (n+1)^2*(n+2)^2*a(n) - 4*(n+2)^3*a(n+1) + (6*n^2+30*n+37)*a(n+2) - 4*(n+3)*a(n+3)+a(n+4)=0. - _Robert Israel_, Jan 23 2020 %F A331325 Sum_{n>=0} a(n) * x^n / (n!)^2 = (1/2) * exp(x) * (BesselI(0,2*sqrt(x)) + BesselJ(0,2*sqrt(x))). - _Ilya Gutkovskiy_, Jul 18 2020 %F A331325 a(n) ~ 2^(-3/2) * exp(2*sqrt(n)-n-1/2) * n^(n+1/4) * (1 + 31/(48*sqrt(n))). - _Vaclav Kotesovec_, Feb 17 2024 %p A331325 gf := cosh(x/(1 - x))/(1 - x): ser := series(gf, x, 22): %p A331325 seq(n!*coeff(ser, x, n), n=0..21); %p A331325 # Alternative: seq(add(abs(A021009(n, 2*k)), k=0..n/2), n=0..21); %p A331325 A331325 := proc(n) local S; S := proc(n, k) option remember; `if`(k = 0, 1, %p A331325 `if`(k > n, 0, S(n-1, k-1)/k + S(n-1, k))) end: n!*add(S(n, 2*k), k=0..n) end: %p A331325 seq(A331325(n), n=0..21); %t A331325 a[n_] := n! HypergeometricPFQ[{1/2 - n/2, -n/2}, {1, 1/2, 1/2}, 1/4]; %t A331325 Array[a, 22, 0] %o A331325 (PARI) x='x+O('x^22); Vec(serlaplace(cosh(x/(1-x))/(1-x))) %o A331325 (Python) %o A331325 def A331325(): %o A331325 sa, sb, ta, tb, n = 1, 2, 1, 0, 2 %o A331325 yield sa %o A331325 yield ta %o A331325 while(True): %o A331325 s = 2*n*sb - ((n-1)**2)*sa %o A331325 t = 2*(n-1)*tb - ((n-1)**2)*ta %o A331325 sa, sb, ta, tb = sb, s, tb, t %o A331325 n += 1 %o A331325 yield (s + t)//2 %o A331325 a = A331325(); print([next(a) for _ in range(22)]) %Y A331325 Cf. A002720, A009940, A021009, A331326. %K A331325 nonn %O A331325 0,3 %A A331325 _Peter Luschny_, Jan 21 2020