cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331333 Interpolating the factorial and the powers of 2. Triangle read by rows, T(n, k) for 0 <= k <= n.

This page as a plain text file.
%I A331333 #22 Dec 20 2024 03:41:53
%S A331333 1,1,2,2,8,4,6,36,36,8,24,192,288,128,16,120,1200,2400,1600,400,32,
%T A331333 720,8640,21600,19200,7200,1152,64,5040,70560,211680,235200,117600,
%U A331333 28224,3136,128,40320,645120,2257920,3010560,1881600,602112,100352,8192,256
%N A331333 Interpolating the factorial and the powers of 2. Triangle read by rows, T(n, k) for 0 <= k <= n.
%F A331333 T(n, k) = n!*S(n, k) where S(n, k) is recursively defined by:
%F A331333 if k = 0 then 1 else if k > n then 0 else 2*S(n-1, k-1)/k + S(n-1, k).
%F A331333 From _Peter Bala_, Jan 19 2020: (Start)
%F A331333 T(n,k) = 2^k*(n!/k!)*binomial(n,k).
%F A331333 E.g.f.: exp((2*x*t)/(1 - x))/(1 - x) = 1 + (1 + 2*t)*x + (2 + 8*t + 4*t^2)*x^2/2! + .... Cf. A021009. (End)
%e A331333 Triangle starts:
%e A331333   [0] 1
%e A331333   [1] 1,     2
%e A331333   [2] 2,     8,      4
%e A331333   [3] 6,     36,     36,      8
%e A331333   [4] 24,    192,    288,     128,     16
%e A331333   [5] 120,   1200,   2400,    1600,    400,     32
%e A331333   [6] 720,   8640,   21600,   19200,   7200,    1152,   64
%e A331333   [7] 5040,  70560,  211680,  235200,  117600,  28224,  3136,   128
%e A331333   [8] 40320, 645120, 2257920, 3010560, 1881600, 602112, 100352, 8192, 256
%p A331333 A331333 := proc(n, k) local S; S := proc(n, k) option remember;
%p A331333 `if`(k = 0, 1, `if`(k > n, 0, 2*S(n-1, k-1)/k + S(n-1, k))) end: n!*S(n, k) end:
%p A331333 seq(seq(A331333(n, k), k=0..n), n=0..8);
%Y A331333 T(n, 0) = A000142(n), T(n, n) = A000079(n).
%Y A331333 Row sums: A087912, alternating row sums: A295382, antidiagonal sums: A222467, positive half sums: A129683, negative half sums: A331334.
%Y A331333 Cf. A021009.
%K A331333 nonn,tabl
%O A331333 0,3
%A A331333 _Peter Luschny_, Jan 19 2020