cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331336 L.g.f.: log(Sum_{k>=0} k! * x^k / Product_{j=1..k} (1 - x^j)).

This page as a plain text file.
%I A331336 #6 Jan 28 2020 03:41:10
%S A331336 1,5,19,97,571,4109,33643,310321,3167101,35427605,430918489,
%T A331336 5663534761,79999275253,1208843786897,19460746819099,332560305456673,
%U A331336 6012905371554295,114689550634547009,2301617124055928731,48479953395028134577,1069433968820519576377
%N A331336 L.g.f.: log(Sum_{k>=0} k! * x^k / Product_{j=1..k} (1 - x^j)).
%F A331336 exp(Sum_{n>=1} a(n) * x^n / n) = g.f. of A101880.
%F A331336 a(n) = n * A101880(n) - Sum_{k=1..n-1} A101880(k) * a(n-k).
%F A331336 a(n) ~ n * n! * (1 - 1/n^2 - 6/n^3 - 38/n^4 - 276/n^5 - 2354/n^6 - 23458/n^7 - 268991/n^8 - 3490842/n^9 - 50520252/n^10 - ...). - _Vaclav Kotesovec_, Jan 28 2020
%t A331336 nmax = 21; CoefficientList[Series[Log[Sum[k! x^k/Product[1 - x^j, {j, 1, k}], {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
%Y A331336 Cf. A000203, A101880.
%K A331336 nonn
%O A331336 1,2
%A A331336 _Ilya Gutkovskiy_, Jan 14 2020