cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331337 L.g.f.: log(Sum_{k>=0} k! * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j)).

This page as a plain text file.
%I A331337 #4 Jan 14 2020 09:57:44
%S A331337 1,1,7,1,11,25,15,17,-11,241,-87,217,-467,645,707,-159,35,-1451,4067,
%T A331337 -9679,17661,-19755,42413,-55615,31061,-59799,28231,147841,-230549,
%U A331337 473185,-1013017,1656385,-2771619,3637865,-4581335,6366313,-5062635,-1059971,8699659,-22821903
%N A331337 L.g.f.: log(Sum_{k>=0} k! * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j)).
%F A331337 exp(Sum_{n>=1} a(n) * x^n / n) = g.f. of A032020.
%F A331337 a(n) = n * A032020(n) - Sum_{k=1..n-1} A032020(k) * a(n-k).
%t A331337 nmax = 40; CoefficientList[Series[Log[Sum[k! x^(k (k + 1)/2)/Product[1 - x^j, {j, 1, k}], {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
%Y A331337 Cf. A000593, A032020, A331336.
%K A331337 sign
%O A331337 1,3
%A A331337 _Ilya Gutkovskiy_, Jan 14 2020