cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331341 a(n) = n! * [x^n] 1 / (1 - Sum_{k=1..n} log(1 + k*x)).

This page as a plain text file.
%I A331341 #7 Jan 28 2020 04:53:04
%S A331341 1,1,13,864,151276,55463850,36662614458,39635566403328,
%T A331341 65354864056231104,155978053040893370400,517297066212058929642000,
%U A331341 2307448887344816064221408256,13478142770116878179295616074624,100820731073923375628659569173854704
%N A331341 a(n) = n! * [x^n] 1 / (1 - Sum_{k=1..n} log(1 + k*x)).
%H A331341 Vaclav Kotesovec, <a href="/A331341/b331341.txt">Table of n, a(n) for n = 0..167</a>
%F A331341 a(n) = n! * [x^n] 1 / (1 - log(Sum_{k=0..n} |Stirling1(n+1,n-k+1)| * x^k)).
%F A331341 a(n) ~ sqrt(Pi) * n^(3*n + 1/2) / (2^(n - 1/2) * exp(n - 1/3)). - _Vaclav Kotesovec_, Jan 28 2020
%t A331341 Table[n! SeriesCoefficient[1/(1 - Sum[Log[1 + k x], {k, 1, n}]), {x, 0, n}], {n, 0, 13}]
%t A331341 Table[n! SeriesCoefficient[1/(1 - Log[Sum[Abs[StirlingS1[n + 1, n - k + 1]] x^k, {k, 0, n}]]), {x, 0, n}], {n, 0, 13}]
%Y A331341 Cf. A006252, A319508, A319509, A331340.
%K A331341 nonn
%O A331341 0,3
%A A331341 _Ilya Gutkovskiy_, Jan 14 2020