cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331352 Number of chiral pairs of colorings of the edges (or triangular faces) of a regular 4-dimensional simplex with n available colors.

This page as a plain text file.
%I A331352 #14 Mar 09 2024 12:06:12
%S A331352 0,6,405,7904,76880,486522,2300305,8806336,28725192,82626270,
%T A331352 214744629,513368064,1144198952,2402617490,4792612545,9142333696,
%U A331352 16768783408,29707141878,51023629173,85234690080,138859666848
%N A331352 Number of chiral pairs of colorings of the edges (or triangular faces) of a regular 4-dimensional simplex with n available colors.
%C A331352 A 4-dimensional simplex has 5 vertices and 10 edges. Its Schläfli symbol is {3,3,3}. The chiral colorings of its edges come in pairs, each the reflection of the other.
%H A331352 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
%F A331352 a(n) = (24*n^2 - 50*n^3 + 20*n^4 + 15*n^6 - 10*n^7 + n^10) / 120.
%F A331352 a(n) = 6*C(n,2) + 387*C(n,3) + 6320*C(n,4) + 41350*C(n,5) + 135792*C(n,6) + 246540*C(n,7) + 252000*C(n,8) + 136080*C(n,9) + 30240*C(n,10), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
%F A331352 a(n) = A331350(n) - A063843(n) = (A331350(n) - A331353(n)) / 2 = A063843(n) - A331353(n).
%t A331352 Table[(24n^2 - 50n^3 + 20n^4 + 15n^6 - 10n^7 + n^10)/120, {n, 1, 25}]
%Y A331352 Cf. A331350 (oriented), A063843 (unoriented), A331353 (achiral).
%Y A331352 Other polychora: A331360 (8-cell), A331356 (16-cell), A338954 (24-cell), A338966 (120-cell, 600-cell).
%Y A331352 Row 4 of A327085 (simplex edges and ridges) and A337885 (simplex faces and peaks).
%K A331352 nonn,easy
%O A331352 1,2
%A A331352 _Robert A. Russell_, Jan 14 2020