cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331378 Numbers whose product of prime indices is divisible by their sum of prime factors.

Original entry on oeis.org

35, 65, 95, 98, 154, 189, 297, 324, 363, 364, 375, 450, 476, 585, 623, 702, 763, 765, 791, 812, 826, 918, 938, 994, 1036, 1064, 1106, 1144, 1148, 1162, 1197, 1225, 1287, 1288, 1300, 1305, 1309, 1449, 1470, 1484, 1517, 1566, 1593, 1665, 1708, 1710, 1736, 1769
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    35: {3,4}
    65: {3,6}
    95: {3,8}
    98: {1,4,4}
   154: {1,4,5}
   189: {2,2,2,4}
   297: {2,2,2,5}
   324: {1,1,2,2,2,2}
   363: {2,5,5}
   364: {1,1,4,6}
   375: {2,3,3,3}
   450: {1,2,2,3,3}
   476: {1,1,4,7}
   585: {2,2,3,6}
   623: {4,24}
   702: {1,2,2,2,6}
   763: {4,29}
   765: {2,2,3,7}
   791: {4,30}
   812: {1,1,4,10}
For example, 450 = prime(1)*prime(2)*prime(2)*prime(3)*prime(3) has prime indices {1,2,2,3,3} and prime factors {2,3,3,5,5}, and since 36 is divisible by 18, 450 is in the sequence.
		

Crossrefs

These are the Heinz numbers of the partitions counted by A330954.
Numbers divisible by the sum of their prime factors are A036844.
Numbers divisible by the sum of their prime indices are A324851.
Sum of prime indices divides product of prime indices: A326149.
Partitions whose Heinz number is divisible by their sum are A330950.
Partitions whose product divides their sum of primes are A331381.
Product of prime indices equals sum of prime factors: A331384.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,1000],Divisible[Times@@primeMS[#],Total[Prime/@primeMS[#]]]&]