cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331382 Numbers whose sum of prime factors is divisible by their product of prime indices.

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 20, 32, 35, 44, 60, 62, 64, 65, 68, 72, 92, 95, 98, 128, 154, 160, 168, 256, 264, 288, 291, 303, 324, 364, 400, 476, 480, 512, 618, 623, 624, 642, 706, 763, 791, 812, 816, 826, 938, 994, 1024, 1036, 1064, 1068, 1106, 1144, 1148, 1152, 1162
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     8: {1,1,1}
    16: {1,1,1,1}
    18: {1,2,2}
    20: {1,1,3}
    32: {1,1,1,1,1}
    35: {3,4}
    44: {1,1,5}
    60: {1,1,2,3}
    62: {1,11}
    64: {1,1,1,1,1,1}
    65: {3,6}
    68: {1,1,7}
    72: {1,1,1,2,2}
    92: {1,1,9}
    95: {3,8}
    98: {1,4,4}
   128: {1,1,1,1,1,1,1}
For example, 60 has prime factors {2,2,3,5} and prime indices {1,1,2,3}, and 12 is divisible by 6, so 60 is in the sequence.
		

Crossrefs

These are the Heinz numbers of the partitions counted by A331381.
Numbers divisible by the sum of their prime factors are A036844.
Partitions whose product is divisible by their sum are A057568.
Numbers divisible by the sum of their prime indices are A324851.
Product of prime indices is divisible by sum of prime indices: A326149.
Partitions whose Heinz number is divisible by their sum are A330950.
Sum of prime factors is divisible by sum of prime indices: A331380
Partitions whose product is equal to the sum of primes are A331383.
Product of prime indices equals sum of prime factors: A331384.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Divisible[Plus@@Prime/@primeMS[#],Times@@primeMS[#]]&]