cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331385 Irregular triangle read by rows where T(n,k) is the number of integer partitions y of n such that Sum_i prime(y_i) = n + k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 3, 1, 0, 0, 0, 2, 3, 1, 1, 0, 0, 0, 1, 4, 3, 1, 2, 0, 0, 0, 0, 2, 5, 3, 2, 2, 0, 1, 0, 0, 0, 0, 1, 4, 6, 3, 4, 2, 0, 2, 0, 0, 0, 0, 0, 2, 6, 6, 4, 6, 2, 1, 2, 0, 1, 0, 0, 0, 0, 0, 1, 4, 8, 6, 6, 7, 2, 4, 2, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2020

Keywords

Examples

			Triangle begins:
  1
  0 1
  0 1 1
  0 0 2 1
  0 0 1 3 1
  0 0 0 2 3 1 1
  0 0 0 1 4 3 1 2
  0 0 0 0 2 5 3 2 2 0 1
  0 0 0 0 1 4 6 3 4 2 0 2
  0 0 0 0 0 2 6 6 4 6 2 1 2 0 1
  0 0 0 0 0 1 4 8 6 6 7 2 4 2 0 1 0 0 0 1
  0 0 0 0 0 0 2 6 9 7 9 7 3 7 2 1 1 0 0 0 2
Row n = 8 counts the following partitions (empty column not shown):
  (2222)  (332)    (44)      (41111)    (53)        (611)   (8)
          (422)    (431)     (311111)   (62)        (5111)  (71)
          (3221)   (3311)    (2111111)  (521)
          (22211)  (4211)               (11111111)
                   (32111)
                   (221111)
Column k = 5 counts the following partitions:
  (11111)  (411)    (43)     (332)    (3222)   (22222)
           (3111)   (331)    (422)    (22221)
           (21111)  (421)    (3221)
                    (3211)   (22211)
                    (22111)
		

Crossrefs

Row lengths are A331418.
Row sums are A000041.
Column sums are A331387.
Shifting row n to the right n times gives A331416.
Partitions whose sum of primes is divisible by their sum are A331379.
Partitions whose product divides their sum of primes are A331381.
Partitions whose product equals their sum of primes are A331383.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[Prime/@#]==m&]],{n,0,10},{m,n,Max@@Table[Total[Prime/@y],{y,IntegerPartitions[n]}]}]