A331385 Irregular triangle read by rows where T(n,k) is the number of integer partitions y of n such that Sum_i prime(y_i) = n + k.
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 3, 1, 0, 0, 0, 2, 3, 1, 1, 0, 0, 0, 1, 4, 3, 1, 2, 0, 0, 0, 0, 2, 5, 3, 2, 2, 0, 1, 0, 0, 0, 0, 1, 4, 6, 3, 4, 2, 0, 2, 0, 0, 0, 0, 0, 2, 6, 6, 4, 6, 2, 1, 2, 0, 1, 0, 0, 0, 0, 0, 1, 4, 8, 6, 6, 7, 2, 4, 2, 0, 1, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 0 2 1 0 0 1 3 1 0 0 0 2 3 1 1 0 0 0 1 4 3 1 2 0 0 0 0 2 5 3 2 2 0 1 0 0 0 0 1 4 6 3 4 2 0 2 0 0 0 0 0 2 6 6 4 6 2 1 2 0 1 0 0 0 0 0 1 4 8 6 6 7 2 4 2 0 1 0 0 0 1 0 0 0 0 0 0 2 6 9 7 9 7 3 7 2 1 1 0 0 0 2 Row n = 8 counts the following partitions (empty column not shown): (2222) (332) (44) (41111) (53) (611) (8) (422) (431) (311111) (62) (5111) (71) (3221) (3311) (2111111) (521) (22211) (4211) (11111111) (32111) (221111) Column k = 5 counts the following partitions: (11111) (411) (43) (332) (3222) (22222) (3111) (331) (422) (22221) (21111) (421) (3221) (3211) (22211) (22111)
Crossrefs
Row lengths are A331418.
Row sums are A000041.
Column sums are A331387.
Shifting row n to the right n times gives A331416.
Partitions whose sum of primes is divisible by their sum are A331379.
Partitions whose product divides their sum of primes are A331381.
Partitions whose product equals their sum of primes are A331383.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Total[Prime/@#]==m&]],{n,0,10},{m,n,Max@@Table[Total[Prime/@y],{y,IntegerPartitions[n]}]}]