This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331386 #12 Feb 02 2021 04:35:35 %S A331386 3,5,6,9,10,11,12,15,17,18,20,21,22,24,25,27,30,31,33,34,35,36,39,40, %T A331386 41,42,44,45,48,50,51,54,55,57,59,60,62,63,65,66,67,68,69,70,72,75,77, %U A331386 78,80,81,82,83,84,85,87,88,90,93,95,96,99,100,102,105,108 %N A331386 Numbers with at least one prime prime index. %C A331386 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A331386 The asymptotic density of this sequence is 1 - Product_{p in A006450} (1 - 1/p) = 1 - 1/(Sum_{n>=1} 1/A076610(n)) > 2/3. - _Amiram Eldar_, Feb 02 2021 %H A331386 Amiram Eldar, <a href="/A331386/b331386.txt">Table of n, a(n) for n = 1..10000</a> %F A331386 A257994(a(n)) > 0. %e A331386 The sequence of terms together with their prime indices begins: %e A331386 3: {2} %e A331386 5: {3} %e A331386 6: {1,2} %e A331386 9: {2,2} %e A331386 10: {1,3} %e A331386 11: {5} %e A331386 12: {1,1,2} %e A331386 15: {2,3} %e A331386 17: {7} %e A331386 18: {1,2,2} %e A331386 20: {1,1,3} %e A331386 21: {2,4} %e A331386 22: {1,5} %e A331386 24: {1,1,1,2} %e A331386 25: {3,3} %e A331386 27: {2,2,2} %e A331386 30: {1,2,3} %e A331386 31: {11} %e A331386 33: {2,5} %e A331386 34: {1,7} %t A331386 Select[Range[100],MemberQ[FactorInteger[#],{_?(PrimeQ@*PrimePi),_}]&] %Y A331386 Complement of A320628. %Y A331386 Positions of terms > 0 in A257994. %Y A331386 Positions of terms > 1 in A295665. %Y A331386 Primes of prime index are A006450. %Y A331386 Primes of nonprime index are A007821. %Y A331386 Products of primes of prime index are A076610. %Y A331386 Products of primes of nonprime index are A320628. %Y A331386 The number of nonprime prime indices is given by A330944. %Y A331386 Cf. A000040, A000720, A001222, A018252, A056239, A076610, A112798, A302242, A320633, A330943, A330944, A330947, A330949. %K A331386 nonn %O A331386 1,1 %A A331386 _Gus Wiseman_, Jan 17 2020