This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331416 #5 Jan 17 2020 17:41:50 %S A331416 1,0,0,1,0,0,0,1,1,0,0,0,0,0,2,1,0,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,2, %T A331416 3,1,1,0,0,0,0,0,0,0,0,0,1,4,3,1,2,0,0,0,0,0,0,0,0,0,0,0,2,5,3,2,2,0, %U A331416 1,0,0,0,0,0,0,0,0,0,0,0,0,1,4,6,3,4,2 %N A331416 Irregular triangle read by rows where T(n,k) is the number of integer partitions y of n such that Sum_i prime(y_i) = k. %e A331416 Triangle begins: %e A331416 1 %e A331416 0 0 1 %e A331416 0 0 0 1 1 %e A331416 0 0 0 0 0 2 1 %e A331416 0 0 0 0 0 0 1 3 1 %e A331416 0 0 0 0 0 0 0 0 2 3 1 1 %e A331416 0 0 0 0 0 0 0 0 0 1 4 3 1 2 %e A331416 0 0 0 0 0 0 0 0 0 0 0 2 5 3 2 2 0 1 %e A331416 0 0 0 0 0 0 0 0 0 0 0 0 1 4 6 3 4 2 0 2 %e A331416 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 6 4 6 2 1 2 0 1 %e A331416 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 8 6 6 7 2 4 2 0 1 0 0 0 1 %e A331416 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 9 7 9 7 3 7 2 1 1 0 0 0 2 %e A331416 Row n = 8 counts the following partitions (empty column not shown): %e A331416 (2222) (332) (44) (41111) (53) (611) (8) %e A331416 (422) (431) (311111) (62) (5111) (71) %e A331416 (3221) (3311) (2111111) (521) %e A331416 (22211) (4211) (11111111) %e A331416 (32111) %e A331416 (221111) %e A331416 Column k = 19 counts the following partitions: %e A331416 (8) (6111) (532) (443) (33222) %e A331416 (71) (51111) (622) (4331) (42222) %e A331416 (5221) (4421) (322221) %e A331416 (4111111) (33311) (2222211) %e A331416 (31111111) (43211) %e A331416 (211111111) (332111) %e A331416 (422111) %e A331416 (3221111) %e A331416 (22211111) %t A331416 maxm[n_]:=Max@@Table[Total[Prime/@y],{y,IntegerPartitions[n]}]; %t A331416 Table[Length[Select[IntegerPartitions[n],Total[Prime/@#]==k&]],{n,0,10},{k,0,maxm[n]}] %Y A331416 Row lengths are A331417. %Y A331416 Row sums are A000041. %Y A331416 Column sums are A000607. %Y A331416 Shifting row n to the left n times gives A331385. %Y A331416 Partitions whose Heinz number is divisible by their sum of primes: A330953. %Y A331416 Partitions of whose sum of primes is divisible by their sum are A331379. %Y A331416 Partitions whose product divides their sum of primes are A331381. %Y A331416 Partitions whose product equals their sum of primes are A331383. %Y A331416 Cf. A000040, A001414, A014689, A056239, A330950, A330954, A331378, A331387, A331415, A331418. %K A331416 nonn,tabf %O A331416 0,15 %A A331416 _Gus Wiseman_, Jan 17 2020