cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331416 Irregular triangle read by rows where T(n,k) is the number of integer partitions y of n such that Sum_i prime(y_i) = k.

This page as a plain text file.
%I A331416 #5 Jan 17 2020 17:41:50
%S A331416 1,0,0,1,0,0,0,1,1,0,0,0,0,0,2,1,0,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,2,
%T A331416 3,1,1,0,0,0,0,0,0,0,0,0,1,4,3,1,2,0,0,0,0,0,0,0,0,0,0,0,2,5,3,2,2,0,
%U A331416 1,0,0,0,0,0,0,0,0,0,0,0,0,1,4,6,3,4,2
%N A331416 Irregular triangle read by rows where T(n,k) is the number of integer partitions y of n such that Sum_i prime(y_i) = k.
%e A331416 Triangle begins:
%e A331416   1
%e A331416   0 0 1
%e A331416   0 0 0 1 1
%e A331416   0 0 0 0 0 2 1
%e A331416   0 0 0 0 0 0 1 3 1
%e A331416   0 0 0 0 0 0 0 0 2 3 1 1
%e A331416   0 0 0 0 0 0 0 0 0 1 4 3 1 2
%e A331416   0 0 0 0 0 0 0 0 0 0 0 2 5 3 2 2 0 1
%e A331416   0 0 0 0 0 0 0 0 0 0 0 0 1 4 6 3 4 2 0 2
%e A331416   0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 6 4 6 2 1 2 0 1
%e A331416   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 8 6 6 7 2 4 2 0 1 0 0 0 1
%e A331416   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 9 7 9 7 3 7 2 1 1 0 0 0 2
%e A331416 Row n = 8 counts the following partitions (empty column not shown):
%e A331416   (2222)  (332)    (44)      (41111)    (53)        (611)   (8)
%e A331416           (422)    (431)     (311111)   (62)        (5111)  (71)
%e A331416           (3221)   (3311)    (2111111)  (521)
%e A331416           (22211)  (4211)               (11111111)
%e A331416                    (32111)
%e A331416                    (221111)
%e A331416 Column k = 19 counts the following partitions:
%e A331416   (8)   (6111)   (532)        (443)       (33222)
%e A331416   (71)  (51111)  (622)        (4331)      (42222)
%e A331416                  (5221)       (4421)      (322221)
%e A331416                  (4111111)    (33311)     (2222211)
%e A331416                  (31111111)   (43211)
%e A331416                  (211111111)  (332111)
%e A331416                               (422111)
%e A331416                               (3221111)
%e A331416                               (22211111)
%t A331416 maxm[n_]:=Max@@Table[Total[Prime/@y],{y,IntegerPartitions[n]}];
%t A331416 Table[Length[Select[IntegerPartitions[n],Total[Prime/@#]==k&]],{n,0,10},{k,0,maxm[n]}]
%Y A331416 Row lengths are A331417.
%Y A331416 Row sums are A000041.
%Y A331416 Column sums are A000607.
%Y A331416 Shifting row n to the left n times gives A331385.
%Y A331416 Partitions whose Heinz number is divisible by their sum of primes: A330953.
%Y A331416 Partitions of whose sum of primes is divisible by their sum are A331379.
%Y A331416 Partitions whose product divides their sum of primes are A331381.
%Y A331416 Partitions whose product equals their sum of primes are A331383.
%Y A331416 Cf. A000040, A001414, A014689, A056239, A330950, A330954, A331378, A331387, A331415, A331418.
%K A331416 nonn,tabf
%O A331416 0,15
%A A331416 _Gus Wiseman_, Jan 17 2020