This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331437 #20 Jan 24 2020 19:16:11 %S A331437 1,0,1,0,0,0,0,0,0,4,0,0,0,0,5,0,0,0,0,0,96,0,0,0,1,0,120,427,0,0,0,0, %T A331437 20,180,1260,6448,0,0,0,0,15,420,3780,23520,56961,0,0,0,0,10,700, %U A331437 10850,79800,347760,892720,0,0,0,0,1,837,24045,269360,1655640,6400800,11905091 %N A331437 Triangle read by rows: T(n,k) = number of homeomorphically irreducible connected labeled graphs with n edges and k vertices, n >= 0, 1 <= k <= n+1. %C A331437 Homeomorphically irreducible graphs are graphs without vertices of degree 2. - _Andrew Howroyd_, Jan 24 2020 %H A331437 Andrew Howroyd, <a href="/A331437/b331437.txt">Table of n, a(n) for n = 0..1325</a> (rows n = 0..50) %H A331437 D. M. Jackson and J. W. Reilly, <a href="https://doi.org/10.1016/0095-8956(75)90090-8">The enumeration of homeomorphically irreducible labeled graphs</a>, J. Combin. Theory, B 19 (1975), 272-286. See Table III. %e A331437 Triangle begins: %e A331437 1; %e A331437 0, 1; %e A331437 0, 0, 0; %e A331437 0, 0, 0, 4; %e A331437 0, 0, 0, 0, 5; %e A331437 0, 0, 0, 0, 0, 96; %e A331437 0, 0, 0, 1, 0, 120, 427; %e A331437 0, 0, 0, 0, 20, 180, 1260, 6448; %e A331437 0, 0, 0, 0, 15, 420, 3780, 23520, 56961; %e A331437 ... %o A331437 (PARI) \\ See Jackson & Reilly for e.g.f. %o A331437 H(n,y) = {my(A=O(x*x^n)); (exp(y*x/2 - (y*x)^2/4 + A)/sqrt(1 + y*x + A))*sum(k=0, n, ((1 + y)*exp(-y^2*x/(1+y*x) + A))^binomial(k,2) * (x*exp((y^3*x^2 + A)/(2*(1 + y*x))))^k / k!)} %o A331437 T(n) = {Mat([Col(p, -n) | p<-Vec(serlaplace(log(H(n,y + O(y^n)))))])} %o A331437 { my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ _Andrew Howroyd_, Jan 24 2020 %Y A331437 Column sums are A003515. %Y A331437 Row sums are A331584. %Y A331437 Right diagonal is A005512(n+1). %Y A331437 Cf. A060514, A331438 (transpose). %K A331437 nonn,tabl %O A331437 0,10 %A A331437 _N. J. A. Sloane_, Jan 19 2020 %E A331437 Terms a(44) and beyond from _Andrew Howroyd_, Jan 24 2020