cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331440 Let S = smallest missing positive number, adjoin S, 2*S, 4*S, 8*S, 16*S, ... to the sequence until reaching a term that has S as a substring; reset S to the smallest missing positive number, repeat.

Original entry on oeis.org

1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 96, 192, 384, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 7, 14, 28, 56, 112, 224, 448, 896, 1792, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 9216, 11, 22, 44, 88, 176, 352, 704, 1408, 2816, 5632, 11264, 13, 26, 52, 104, 208, 416
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2020

Keywords

Comments

Theorem 1: Every positive numbers appears at least once.
Proof from Keith F. Lynch, Jan 04 2020:
Since no nonzero power of 2 equals a power of 10, i.e., log(10)/log(2) is irrational, any sequence in which each term is the double of the previous term will start with every decimal number infinitely many times. So any S will terminate after a finite number of steps, and the next missing number will be used as S. QED
Theorem 2: No term is repeated.
Proof:
Suppose N is repeated, so there are a pair of chains
{S, 2*S, 4*S, ..., N = 2^i*S, ...},
{T, 2*T, 4*T, ..., N = 2^j*T, ...},
where T occurs after S. There are two cases. If i>=j then T = 2^(i-j)*S, so T was not a missing number. If i
So this is a permutation of the positive integers.
From Rémy Sigrist, Jan 23 2020: (Start)
The sequence can naturally be seen as an irregular table where:
- the n-th row has A331442(n) = 1 + A331619(T(n, 1)) terms, and
- T(n, k+1) = 2*T(n, k) for k = 1..A331442(n)-1.
(End)

Examples

			The process begins like this:
Initially S = 1 is the smallest missing number, so we have:
S = 1, 2, 4, 8, 16, stop (because 16 contains S), S = 3, 6, 12, 24, 48, 96, 192, 384, stop, S = 5, 10, 20, 40, 80, 60, 320, 640, 1280, 2560, stop, S = 7, 14, 28, 56, 112, 224, 448, 896, 1792, stop, S = 9, 18, 36, 72, ...
		

References

  • Eric Angelini, Posting to Math Fun Mailing List, Jan 04 2020.

Crossrefs

The inverse permutation is A331441. The lengths of the chains are given in A331442.
Cf. A331619.

Programs

  • PARI
    See Links section.