cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331450 Irregular triangle read by rows: Take a regular n-sided polygon (n>=3) with all diagonals drawn, as in A007678. Then T(n,k) = number of k-sided polygons in that figure for k = 3, 4, ..., max_k.

Original entry on oeis.org

1, 4, 10, 0, 1, 18, 6, 35, 7, 7, 0, 1, 56, 24, 90, 36, 18, 9, 0, 0, 1, 120, 90, 10, 176, 132, 44, 22, 276, 168, 377, 234, 117, 39, 0, 13, 0, 0, 0, 0, 1, 476, 378, 98, 585, 600, 150, 105, 15, 0, 0, 0, 0, 0, 0, 0, 1, 848, 672, 128, 48, 1054, 901, 357, 136, 17, 34, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1404, 954, 72, 18, 18, 1653, 1444, 646, 190, 57, 38, 2200, 1580, 580, 120, 0, 20, 2268, 2520, 903, 462, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 3

Views

Author

Keywords

Comments

Computed by Scott R. Shannon, Jan 24 2020
See A331451 for a version of this triangle giving the counts for k = 3 through n.
Mitosis of convex polygons, by Scott R. Shannon and N. J. A. Sloane, Dec 13 2021 (Start)
Borrowing a term from biology, we can think of this process as the "mitosis" of a regular polygon. Row 6 of this triangle shows that a regular hexagon "mitoses" into 18 triangles and 4 quadrilaterals, which we denote by 3^18 4^6.
What if we start with a convex but not necessarily regular n-gon? Let M(n) denote the number of different decompositions into cells that can be obtained. For n = 3, 4, and 5 there is only one possibility. For n = 6 there are two possibilities, 3^18 4^6 and 3^19 4^3 5^3. For n = 7 there are at least 11 possibilities. So the sequence M(n) for n >= 3 begins 1, 1, 1, 2, >=11, ...
The links below give further information. See also A350000. (End)

Examples

			A hexagon with all diagonals drawn contains 18 triangles and 6 quadrilaterals, so row 6 is [18, 6].
Triangle begins:
  1,
  4,
  10, 0, 1,
  18, 6,
  35, 7, 7, 0, 1,
  56, 24,
  90, 36, 18, 9, 0, 0, 1,
  120, 90, 10,
  176, 132, 44, 22, 0, 0, 0, 0, 1
  276, 168,
  377, 234, 117, 39, 0, 13, 0, 0, 0, 0, 1,
  476, 378, 98,
  585, 600, 150, 105, 15, 0, 0, 0, 0, 0, 0, 0, 1,
  848, 672, 128, 48,
  1054, 901, 357, 136, 17, 34, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  1404, 954, 72, 18, 18,
  1653, 1444, 646, 190, 57, 38, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
  2200, 1580, 580, 120, 0, 20,
  2268, 2520, 903, 462, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  2992, 2860, 814, 66, 44, 44,
  3749, 2990, 1564, 644, 115, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  ...
The row sums are A007678, the first column is A062361.
		

Crossrefs

Extensions

Added "regular" to definition. - N. J. A. Sloane, Mar 06 2021