This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331461 #21 Feb 01 2020 22:37:53 %S A331461 1,1,1,1,1,1,1,2,1,1,1,3,3,1,1,1,5,8,4,1,1,1,7,23,16,5,1,1,1,11,66,93, %T A331461 30,6,1,1,1,15,212,652,332,50,7,1,1,1,22,686,6369,6414,1062,80,8,1,1, %U A331461 1,30,2389,79568,226041,56712,3117,120,9,1,1,1,42,8682,1256425,12848128,7295812,441881,8399,175,10,1,1 %N A331461 Array read by antidiagonals: A(n,k) is the number of nonequivalent binary matrices with k columns and any number of nonzero rows with n ones in every column up to permutation of rows and columns. %C A331461 A(n,k) is the number of non-isomorphic set multipartitions (multiset of sets) with k parts each part has size n. %H A331461 Andrew Howroyd, <a href="/A331461/b331461.txt">Table of n, a(n) for n = 0..152</a> %F A331461 A306018(n) = Sum_{d|n} A(n/d, d). %e A331461 Array begins: %e A331461 =========================================================== %e A331461 n\k | 0 1 2 3 4 5 6 7 %e A331461 ----+----------------------------------------------------- %e A331461 0 | 1 1 1 1 1 1 1 1 ... %e A331461 1 | 1 1 2 3 5 7 11 15 ... %e A331461 2 | 1 1 3 8 23 66 212 686 ... %e A331461 3 | 1 1 4 16 93 652 6369 79568 ... %e A331461 4 | 1 1 5 30 332 6414 226041 12848128 ... %e A331461 5 | 1 1 6 50 1062 56712 7295812 1817321457 ... %e A331461 6 | 1 1 7 80 3117 441881 195486906 200065951078 ... %e A331461 7 | 1 1 8 120 8399 3006771 4298181107 17131523059493 ... %e A331461 ... %e A331461 The A(2,3) = 8 matrices are: %e A331461 [1 0 0] [1 1 0] [1 1 1] [1 1 0] [1 1 0] [1 1 1] [1 1 0] [1 1 1] %e A331461 [1 0 0] [1 0 0] [1 0 0] [1 1 0] [1 0 1] [1 1 0] [1 0 1] [1 1 1] %e A331461 [0 1 0] [0 1 0] [0 1 0] [0 0 1] [0 1 0] [0 0 1] [0 1 1] %e A331461 [0 1 0] [0 0 1] [0 0 1] [0 0 1] [0 0 1] %e A331461 [0 0 1] [0 0 1] %e A331461 [0 0 1] %o A331461 (PARI) \\ See A304942 for Blocks %o A331461 T(n,k)={Blocks(k, n*k, n)} %o A331461 { for(n=0, 7, for(k=0, 6, print1(T(n,k), ", ")); print) } %Y A331461 Rows n=0..6 are A000012, A000041, A050535, A050913, A058783, A058784, A058785. %Y A331461 Columns k=0..4 are A000012, A000012, A000027(n+1), A002624, A331720. %Y A331461 Cf. A188392, A262809, A304942, A306018, A330942, A331485, A331508, A331509, A331510. %K A331461 nonn,tabl %O A331461 0,8 %A A331461 _Andrew Howroyd_, Jan 18 2020