cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331479 Table read by rows: row n lists the numbers m such that the first n primes can be partitioned into m subsets all of which have the same sum.

This page as a plain text file.
%I A331479 #10 Jan 25 2020 18:21:01
%S A331479 1,1,1,2,1,1,2,1,1,2,1,1,2,1,3,1,2,4,1,1,2,1,1,2,4,1,3,1,2,4,5,1,3,1,
%T A331479 2,4,1,3,1,2,4,1,7,1,2,1,3,1,2,4,5,1,3,1,2,4,1,3,1,2,4,5,8,1,3,9,1,2,
%U A331479 4,5,8,1,3,1,2,4,7,1,3,1,2,4,1,3,1,2,4,8
%N A331479 Table read by rows: row n lists the numbers m such that the first n primes can be partitioned into m subsets all of which have the same sum.
%C A331479 Consider the following one-dimensional bin packing problem: given n items whose sizes are the first n primes, list the numbers m such that all the items can be packed into m bins of identical capacity, with each bin packed completely full. The resulting list is row n.
%C A331479 If a row contains a number m, it necessarily contains all divisors of m.
%e A331479 In bin-packing terms, for n=19, the sum of the 19 item sizes, i.e., the sum of the first n primes, is 2 + 3 + ... + 67 = 568, whose divisors begin 1, 2, 4, 8, ...; the bin capacity must be at least 67 (the size of the largest item), and 568/67 < 9, so the number of bins m cannot exceed 8. However, the 19 items cannot be packed into 8 bins: the bin capacity would be 568/8 = 71 (which, as an odd sum, would require that each bin containing only odd-sized items -- i.e., every bin other than the one containing the item of size 2 -- contain an odd number of items, hence at least 3 items, but there are only 19 items in total). So the remaining values of m are 1 (i.e., packing all 19 items in a single bin), 2 (e.g., 568/2 = 284 = 67 + 61 + 59 + 53 + 41 + 3 = 47 + 43 + 37 + 31 + 29 + 23 + 19 + 17 + 13 + 11 + 7 + 5 + 2), and 4 (e.g., 568/4 = 142 = 67 + 61 + 11 + 3 = 59 + 53 + 23 + 7 = 47 + 43 + 37 + 13 + 2 = 41 + 31 + 29 + 19 + 17 + 5), so row 19 consists of the numbers 1, 2, and 4.
%e A331479 .                                       Numbers m such that
%e A331479              Sum of  Divisors m of sum  1st n primes can be
%e A331479       n-th   1st n       such that      partitioned into m
%e A331479    n  prime  primes  m <= sum/prime(n)  subsets w/same sum
%e A331479   --  -----  ------  -----------------  -------------------
%e A331479    1     2       2   1                  1;
%e A331479    2     3       5   1                  1;
%e A331479    3     5      10   1, 2               1, 2;
%e A331479    4     7      17   1                  1;
%e A331479    5    11      28   1, 2               1, 2;
%e A331479    6    13      41   1                  1;
%e A331479    7    17      58   1, 2               1, 2;
%e A331479    8    19      77   1                  1;
%e A331479    9    23     100   1, 2, 4            1, 2;
%e A331479   10    29     129   1, 3               1, 3;
%e A331479   11    31     160   1, 2, 4, 5         1, 2, 4;
%e A331479   12    37     197   1                  1;
%e A331479   13    41     238   1, 2               1, 2;
%e A331479   14    43     281   1                  1;
%e A331479   15    47     328   1, 2, 4            1, 2, 4;
%e A331479   16    53     381   1, 3               1, 3;
%e A331479   17    59     440   1, 2, 4, 5         1, 2, 4, 5;
%e A331479   18    61     501   1, 3               1, 3;
%e A331479   19    67     568   1, 2, 4, 8         1, 2, 4;
%e A331479   20    71     639   1, 3, 9            1, 3;
%e A331479   21    73     712   1, 2, 4, 8         1, 2, 4;
%e A331479   22    79     791   1, 7               1, 7;
%e A331479   23    83     874   1, 2               1, 2;
%e A331479   24    89     963   1, 3, 9            1, 3;
%e A331479   25    97    1060   1, 2, 4, 5, 10     1, 2, 4, 5;
%e A331479   26   101    1161   1, 3, 9            1, 3;
%e A331479   27   103    1264   1, 2, 4, 8         1, 2, 4;
%e A331479   28   107    1371   1, 3               1, 3;
%e A331479   29   109    1480   1, 2, 4, 5, 8, 10  1, 2, 4, 5, 8;
%e A331479   30   113    1593   1, 3, 9            1, 3, 9;
%e A331479   31   127    1720   1, 2, 4, 5, 8, 10  1, 2, 4, 5, 8;
%e A331479   32   131    1851   1, 3               1, 3;
%e A331479   33   137    1988   1, 2, 4, 7, 14     1, 2, 4, 7;
%e A331479   34   139    2127   1, 3               1, 3;
%e A331479   35   149    2276   1, 2, 4            1, 2, 4;
%e A331479   36   151    2427   1, 3               1, 3;
%e A331479   37   157    2584   1, 2, 4, 8         1, 2, 4, 8;
%Y A331479 Cf. A000040, A007504, A053050, A306443, A327449.
%K A331479 nonn,tabf
%O A331479 1,4
%A A331479 _Jon E. Schoenfield_, Jan 17 2020