This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331487 #21 Sep 08 2022 08:46:25 %S A331487 13,17,19,23,29,83,149,173,227,389,1109,4001,35753,36551,363119,702193 %N A331487 Primes p such that exactly one of 2^(p+1) - 3 and 2^(p+1) + 3 is a prime. %C A331487 Primes p such that exactly one of k*2^p - 2*k + 1 and k*2^p + 2*k - 1 is a prime: %C A331487 k = 1: odd terms in A000043; %C A331487 k = 2: this sequence; %C A331487 k = 3: 5, 13, 19, 29, 31, 109, 139, 271, 379, 1553, ... %C A331487 k = 4: 2, 37, ... %C A331487 k = 5: 3, 5, 7, 17, 19, 23, 41, 61, 67, 151, 157, 313, 4111, 6337, ... %C A331487 k = 6: 2, 5, 7, 11, 19, 29, 149, 191, 373, 449, 983, 1667, 1973, ... %C A331487 k = 7: 2, 3, 5, 7, 11, 13, 29, 43, 61, 97, 109, 127, 131, 239, 461, 1153, ... %C A331487 k = 8: 3, 11, 19, 23, 29, 37, 43, 97, 193, 307, 617, 1847, ... %C A331487 k = 9: 3, 5, 23, 41, 61, 71, 97, 131, 157, 863, 3119, ... %C A331487 k = 10: 2, 3, 13, ... %C A331487 ... %e A331487 13 is in this sequence because 2^(13+1) - 3 = 16381 (prime) and 2^(13+1) + 3 = 16387 (composite number). %t A331487 Select[Range[400], PrimeQ[#] && Xor @@ PrimeQ[2^(# + 1) + {-3, 3}] &] (* _Amiram Eldar_, Jan 19 2020 *) %o A331487 (Magma) [p: p in PrimesUpTo(1000) | not (#[k: k in [2] | IsPrime(k*2^p-2*k+1)]) eq (#[k: k in [2] | IsPrime(k*2^p+2*k-1)])]; %o A331487 (PARI) isok(p) = isprime(2*2^p-3) + isprime(2*2^p+3) == 1; %o A331487 forprime(p=2, 500, if(isok(p), print1(p, ", "))); \\ _Jinyuan Wang_, Jan 19 2020 %Y A331487 Cf. A000043, A050414, A057732, A174269. %K A331487 nonn,more %O A331487 1,1 %A A331487 _Juri-Stepan Gerasimov_, Jan 18 2020 %E A331487 a(12)-a(16) added using A050414 and A057732 by _Jinyuan Wang_, May 15 2020