A331490 Matula-Goebel numbers of series-reduced rooted trees with more than two branches (of the root).
8, 16, 28, 32, 56, 64, 76, 98, 112, 128, 152, 172, 196, 212, 224, 256, 266, 304, 343, 344, 392, 424, 428, 448, 512, 524, 532, 602, 608, 652, 686, 688, 722, 742, 784, 848, 856, 896, 908, 931, 1024, 1048, 1052, 1064, 1204, 1216, 1244, 1304, 1372, 1376, 1444
Offset: 1
Keywords
Examples
The sequence of all series-reduced rooted trees with more than two branches together with their Matula-Goebel numbers begins: 8: (ooo) 16: (oooo) 28: (oo(oo)) 32: (ooooo) 56: (ooo(oo)) 64: (oooooo) 76: (oo(ooo)) 98: (o(oo)(oo)) 112: (oooo(oo)) 128: (ooooooo) 152: (ooo(ooo)) 172: (oo(o(oo))) 196: (oo(oo)(oo)) 212: (oo(oooo)) 224: (ooooo(oo)) 256: (oooooooo) 266: (o(oo)(ooo)) 304: (oooo(ooo)) 343: ((oo)(oo)(oo)) 344: (ooo(o(oo)))
Links
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014)
- Eric Weisstein's World of Mathematics, Series-reduced tree.
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
These trees are counted by A331488.
Unlabeled rooted trees are counted by A000081.
Lone-child-avoiding rooted trees are counted by A001678.
Topologically series-reduced rooted trees are counted by A001679.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Matula-Goebel numbers of series-reduced rooted trees are A331489.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; srQ[n_]:=Or[n==1,With[{m=primeMS[n]},And[Length[m]>1,And@@srQ/@m]]]; Select[Range[1000],PrimeOmega[#]>2&&srQ[#]&]
Comments