cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331490 Matula-Goebel numbers of series-reduced rooted trees with more than two branches (of the root).

Original entry on oeis.org

8, 16, 28, 32, 56, 64, 76, 98, 112, 128, 152, 172, 196, 212, 224, 256, 266, 304, 343, 344, 392, 424, 428, 448, 512, 524, 532, 602, 608, 652, 686, 688, 722, 742, 784, 848, 856, 896, 908, 931, 1024, 1048, 1052, 1064, 1204, 1216, 1244, 1304, 1372, 1376, 1444
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2020

Keywords

Comments

We say that a rooted tree is (topologically) series-reduced if no vertex has degree 2.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.
Also Matula-Goebel numbers of lone-child-avoiding rooted trees with more than two branches.

Examples

			The sequence of all series-reduced rooted trees with more than two branches together with their Matula-Goebel numbers begins:
    8: (ooo)
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   98: (o(oo)(oo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
  212: (oo(oooo))
  224: (ooooo(oo))
  256: (oooooooo)
  266: (o(oo)(ooo))
  304: (oooo(ooo))
  343: ((oo)(oo)(oo))
  344: (ooo(o(oo)))
		

Crossrefs

These trees are counted by A331488.
Unlabeled rooted trees are counted by A000081.
Lone-child-avoiding rooted trees are counted by A001678.
Topologically series-reduced rooted trees are counted by A001679.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Matula-Goebel numbers of series-reduced rooted trees are A331489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    srQ[n_]:=Or[n==1,With[{m=primeMS[n]},And[Length[m]>1,And@@srQ/@m]]];
    Select[Range[1000],PrimeOmega[#]>2&&srQ[#]&]