This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331501 #49 Nov 21 2024 09:31:52 %S A331501 2,1,1,7,0,0,0,0,1,6,6,1,2,6,7,4,6,6,8,5,4,5,3,6,9,8,1,9,8,3,7,0,9,5, %T A331501 6,1,0,1,3,4,4,9,1,5,8,4,7,0,2,4,0,3,4,2,1,7,7,9,1,3,3,0,3,0,8,1,0,9, %U A331501 8,4,5,3,3,3,6,4,0,1,2,8,2,0,0,0,2,7,9,1,5,6,0,2,6,6,6,1,5,7,9,8,2,1,8,8,8 %N A331501 Decimal expansion of exp(3/4). %C A331501 Considering graph evolutions (see the Flajolet link) with 2n vertices initially isolated, the probability of the occurrence of an acyclic graph at the critical point n in the uniform model, will be denoted by P(n). In the case of the permutation model, the respective probability will be denoted by Pp(n). %C A331501 Pp(n) / P(n) ~ exp(3/4) since Pp(n) = A302112(n) / A331505(2n) = A302112(n) / C(C(2n,2), n), and P(n) = A302112(n) * n! * 2^n / (2n)^(2n), Pp(n) / P(n) = (2n)^(2n) / (C(C(2n,2), n) * n! * 2^n), and lim_{n->oo} Pp(n) / P(n) = exp(3/4). %H A331501 Philippe Flajolet, Donald E. Knuth, and Boris Pittel, <a href="https://doi.org/10.1016/0012-365X(89)90087-3">The first cycles in an evolving graph</a>, Discrete Mathematics, Vol. 75, No. 1-3 (1989), pp. 167-215. %H A331501 Leonard Giugiuc and Dan Stefan Marinescu, <a href="https://cms.math.ca/publications/crux/issue?volume=43&issue=6">Problem 4257</a>, Crux Mathematicorum, Vol. 43, No. 6 (2017), pp. 263 and 265; <a href="https://cms.math.ca/publications/crux/issue?volume=44&issue=6">Solution to Problem 4257</a>, ibid., Vol. 44, No. 6 (2018), pp. 268-270. %H A331501 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A331501 Equals lim_{n->oo} Pp(n) / P(n) = lim_{n->oo} (2*n)^(2*n) / (binomial(binomial(2n,2), n) * n! * 2^n). %F A331501 Equals lim_{n->oo} sqrt(n)/A000178(n)^(1/(n*(n+1))) (Giugiuc and Marinescu, 2017). - _Amiram Eldar_, Apr 12 2022 %e A331501 2.1170000166126746685453698198370956101344915847024... %p A331501 evalf(exp(3/4), 134); %t A331501 RealDigits[Exp[3/4], 10, 100][[1]] (* _Amiram Eldar_, Apr 12 2022 *) %o A331501 (PARI) exp(3/4) \\ _Charles R Greathouse IV_, Nov 21 2024 %Y A331501 Cf. A000178, A001113, A019774, A092042, A302112, A331500, A331502, A331505. %K A331501 nonn,cons %O A331501 1,1 %A A331501 _Washington Bomfim_, Feb 27 2020