A331504 Number of labeled graphs with n nodes and floor(n*(n-1)/4) edges.
1, 1, 3, 20, 252, 6435, 352716, 40116600, 9075135300, 4116715363800, 3824345300380220, 7219428434016265740, 27217014869199032015600, 205397724721029574666088520, 3136262529306125724764953838760
Offset: 1
Keywords
Examples
a(4) is 20 because for n=4, floor(n*(n-1)/4) = 3, and there are A000717(4) = 3 graphs with four points and three edges. See figure below or J. Riordan reference. The non-isomorphic graphs with four nodes and three edges along with the corresponding number of labeled graphs are as follows: . *--* *--* * | / | | |/ * | | * *--* *--*--* 4 12 4
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 109.
Links
- Dietmar Cieslik, Counting Networks.
- Carlos R. Lucatero, Combinatorial Enumeration of Graphs.
Programs
-
PARI
a(n) = binomial(binomial(n,2), n*(n-1)\4);
Formula
a(n) = binomial(binomial(n,2), floor(n*(n-1)/4)).
Comments