cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331505 Number of labeled graphs with n nodes and floor(n/2) edges.

This page as a plain text file.
%I A331505 #82 Mar 18 2020 09:47:13
%S A331505 1,1,3,15,45,455,1330,20475,58905,1221759,3478761,90858768,256851595,
%T A331505 8093990190,22760723700,840261910995,2353351951665,99615373765775,
%U A331505 278110855548955,13278694407181203,36976937738226486
%N A331505 Number of labeled graphs with n nodes and floor(n/2) edges.
%C A331505 Considering the permutation model of graph evolution (see the Flajolet reference) with 2n vertices initially isolated, the probability of the occurrence of an acyclic graph at the critical point n is Pp(n) = A302112(n)/a(2n). Note that a(2n) is the number of labeled graphs with 2n nodes and n edges.
%C A331505 Since a(2n) = C(C(2n, 2), n) we have Pp(n)= A302112(n)/C(C(2n, 2), n).
%C A331505 Therefore, by _Vaclav Kotesovec_'s approximation in A302112, Pp(n) ~ e^(3/4) * P(n), where P(n) = c1 / n^(1/6) is the corresponding probability in the uniform model. Cf. A331500.
%C A331505 If t < n, P(n) is a lower bound of P(t). If t > n, P(n) is an upper bound of P(t). Here P(t) is the probability of an acyclic graph in time t.
%C A331505 Concerning the permutation model, the presence of cycles in graphs evolving near the critical time should be estimated by the above approximation.
%D A331505 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 109.
%H A331505 Washington Bomfim, <a href="/A331505/a331505.png">Approximation of Pp(n)</a>
%H A331505 P. Flajolet, D. E. Knuth, and B. Pittel, <a href="https://doi.org/10.1016/0012-365X(89)90087-3">The first cycles in an evolving graph</a>, Discrete Mathematics, 75(1-3):167-215, 1989.
%H A331505 Carlos R. Lucatero, <a href="https://www.intechopen.com/online-first/combinatorial-enumeration-of-graphs">Combinatorial Enumeration of Graphs</a>.
%F A331505 a(n) = C( C(n,2), floor(n/2) ).
%e A331505 a(4) is 15 because for n = 4, floor(n/2) = 2, and there are two graphs with four points and two edges. See the figure below or the J. Riordan reference.
%e A331505 The non-isomorphic graphs with four nodes and two edges along with the corresponding number of labeled graphs are as follows:
%e A331505 .
%e A331505   *--*     *  *
%e A331505   |        |  |
%e A331505   |        |  |
%e A331505   *  *     *  *
%e A331505    12        3
%e A331505 Pp(2) = A302112(2)/a(4) = 15/15 = 1. All the graphs with four nodes and two edges are acyclic.
%o A331505 (PARI)
%o A331505 C(x, y) = binomial(x, y);
%o A331505 a(n) = C(C(n,2), n\2);
%o A331505 A302112(n)={my(S=0, j); /* From _Jon E. Schoenfield_'s formula in A302112. */
%o A331505 for(j = 0, n,
%o A331505    S+=(-1/2)^j* C(n, j) * C(2*n-1, n+j-1) * (2*n)^(n-j) * (n+j)!
%o A331505    );
%o A331505 (1/n!)*S
%o A331505 }; /* end A302112(n) */
%o A331505 c1 = (2/3)^(1/3) * sqrt(Pi) / gamma(1/3);
%o A331505 UpBoundP(n) = c1 / n^(1/6);            /* Approximation for P(n) */
%o A331505 UpBoundPp(n) = exp(3/4) * UpBoundP(n); /* Approximation for Pp(n) */
%o A331505 Pp(n) = A302112(n)/a(2*n);
%o A331505 Ratio(n) = UpBoundPp(n) / Pp(n);
%Y A331505 Cf. A000717, A084546, A331504, A302112 (numerators of Pp(n)), A331500, A331501.
%K A331505 nonn,look
%O A331505 1,3
%A A331505 _Washington Bomfim_, Jan 18 2020