This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331510 #15 Feb 09 2020 02:43:15 %S A331510 1,1,1,1,1,1,1,2,0,1,1,3,1,0,1,1,5,4,0,0,1,1,7,12,3,0,0,1,1,11,36,23, %T A331510 1,0,0,1,1,15,124,191,30,0,0,0,1,1,22,412,2203,837,23,0,0,0,1,1,30, %U A331510 1500,31313,41664,2688,12,0,0,0,1 %N A331510 Array read by antidiagonals: A(n,k) is the number of nonequivalent binary matrices with k columns and any number of distinct nonzero rows with n ones in every column up to permutation of rows and columns. %F A331510 A(n,k) = 0 for k > 0, n > 2^(k-1). %F A331510 A(n,k) = A(2^(k-1) - n, k) for k > 0, n <= 2^(k-1). %e A331510 Array begins: %e A331510 ================================= %e A331510 n\k | 0 1 2 3 4 5 6 7 %e A331510 ----+---------------------------- %e A331510 0 | 1 1 1 1 1 1 1 1 ... %e A331510 1 | 1 1 2 3 5 7 11 15 ... %e A331510 2 | 1 0 1 4 12 36 124 412 ... %e A331510 3 | 1 0 0 3 23 191 2203 ... %e A331510 4 | 1 0 0 1 30 837 ... %e A331510 5 | 1 0 0 0 23 ... %e A331510 ... %e A331510 The A(2,3) = 4 matrices are: %e A331510 [1 1 1] [1 1 0] [1 1 1] [1 1 0] %e A331510 [1 0 0] [1 0 1] [1 1 0] [1 0 1] %e A331510 [0 1 0] [0 1 0] [0 0 1] [0 1 1] %e A331510 [0 0 1] [0 0 1] %Y A331510 Rows n=1..3 are A000041, A331717, A331718. %Y A331510 Column k=5 is A331719. %Y A331510 Cf. A188445, A330942, A331461, A331508, A331509. %K A331510 nonn,tabl,more %O A331510 0,8 %A A331510 _Andrew Howroyd_, Jan 18 2020 %E A331510 a(58)-a(65) from _Andrew Howroyd_, Feb 08 2020