This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331511 #43 Jan 26 2020 01:13:04 %S A331511 1,1,0,1,2,-15,1,4,-6,32,1,6,9,-12,105,1,8,30,16,30,-576,1,10,57,140, %T A331511 25,60,105,1,12,90,384,630,36,-140,5760,1,14,129,772,2505,2772,49, %U A331511 -280,-13167,1,16,174,1328,6430,16008,12012,64,630,-30400 %N A331511 Square array T(n,k), n >= 0, k >= 0, read by descending antidiagonals, where column k is the expansion of (1 - (k-3)*x)/(1 - 2*(k-1)*x + ((k-3)*x)^2)^(3/2). %H A331511 Seiichi Manyama, <a href="/A331511/b331511.txt">Antidiagonals n = 0..139, flattened</a> %F A331511 T(n,k) = Sum_{j=0..n} (k-3)^(n-j) * (n+j+1) * binomial(n,j) * binomial(n+j,j). %F A331511 T(n,k) = Sum_{j=0..n} (k-2)^j * (j+1) * binomial(n+1,j+1)^2. %F A331511 T(n,k) = (n + 1)^2*hypergeom([-n, -n], [2], k - 2). - _Peter Luschny_, Jan 20 2020 %F A331511 n * (2*n-1) * T(n,k) = 2 * (2 * (k-1) * n^2 - k + 2) * T(n-1,k) - (k-3)^2 * n * (2*n+1) * T(n-2,k) for n>1. - _Seiichi Manyama_, Jan 25 2020 %e A331511 Square array begins: %e A331511 1, 1, 1, 1, 1, 1, ... %e A331511 0, 2, 4, 6, 8, 10, ... %e A331511 -15, -6, 9, 30, 57, 90, ... %e A331511 32, -12, 16, 140, 384, 772, ... %e A331511 105, 30, 25, 630, 2505, 6430, ... %e A331511 -576, 60, 36, 2772, 16008, 52524, ... %e A331511 . %e A331511 From _Peter Luschny_, Jan 20 2020: (Start) %e A331511 Read by ascending antidiagonals gives: %e A331511 [0] 1 %e A331511 [1] 0, 1 %e A331511 [2] -15, 2, 1 %e A331511 [3] 32, -6, 4, 1 %e A331511 [4] 105, -12, 9, 6, 1 %e A331511 [5] -576, 30, 16, 30, 8, 1 %e A331511 [6] 105, 60, 25, 140, 57, 10, 1 %e A331511 [7] 5760, -140, 36, 630, 384, 90, 12, 1 %e A331511 [8] -13167, -280, 49, 2772, 2505, 772, 129, 14, 1 %e A331511 [9] -30400, 630, 64, 12012, 16008, 6430, 1328, 174, 16, 1 (End) %p A331511 T := (n, k) -> (n + 1)^2*hypergeom([-n, -n], [2], k - 2): %p A331511 seq(lprint(seq(simplify(T(n,k)), k=0..7)), n=0..6) # _Peter Luschny_, Jan 20 2020 %t A331511 T[n_, k_] := (n + 1)^2 * HypergeometricPFQ[{-n, -n}, {2}, k - 2]; Table[Table[T[n, k - n], {n, 0, k}], {k, 0, 9}] //Flatten (* _Amiram Eldar_, Jan 20 2020 *) %Y A331511 Columns k=0..5 give A331551, A331552, A000290(n+1), A002457, A108666(n+1), A331323. %Y A331511 T(n,n+3) gives A331512. %Y A331511 Cf. A307883, A331513, A331514. %K A331511 sign,tabl %O A331511 0,5 %A A331511 _Seiichi Manyama_, Jan 18 2020