cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331539 a(n) gives the number of primes of form (2*n+1)*2^m + 1 where m satisfies 2^m <= 2*n+1.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 2, 1, 0, 2, 1, 2, 2, 2, 0, 1, 2, 2, 4, 1, 1, 1, 0, 1, 2, 2, 1, 2, 1, 1, 3, 3, 2, 2, 2, 2, 4, 1, 1, 3, 2, 2, 2, 1, 0, 3, 3, 2, 4, 1, 0, 3, 1, 1, 2, 2, 1, 3, 2, 0, 1, 2, 1, 2, 2, 2, 4, 1, 1, 4, 0, 1, 0, 2, 1, 2, 2, 0, 2, 2, 3, 5, 1, 1, 0, 1
Offset: 0

Views

Author

Jeppe Stig Nielsen, Jan 19 2020

Keywords

Comments

For each index n, let k = 2*n+1. Then a(n) gives the number of primes of form k*2^m + 1 that are NOT considered Proth primes (A080076) because their m are too small.
In the edge case n=0, so k=1, we count 1*2^0 + 1 = 2 as a non-Proth prime.

Examples

			For n=10, we consider 21*2^m + 1, where m runs from 0 to 4 (the next value m=5 would make 2^m exceed 21). The number of cases where 21*2^m + 1 is prime, is 2, namely m=1 (prime 43) and m=4 (prime 337). So 2 primes means a(10)=2. Compare with the start of A032360, all k=21 primes.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Boole @ PrimeQ[(2n+1)*2^m + 1], {m, 0, Log2[2n+1]}]; Array[a, 100, 0] (* Amiram Eldar, Jan 20 2020 *)
  • PARI
    a(n) = my(k=2*n+1);sum(m=0,logint(k,2),ispseudoprime(k<