This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331547 #43 Mar 07 2020 02:02:55 %S A331547 3,7,8,10,26,27,34,85,93,104,143,152 %N A331547 Numbers k such that k and k! - 1 have the same number of divisors. %C A331547 The sequence also includes: 143, 152, 186, 230, 379, 381, 543, 573, 602. - _Daniel Suteu_, Jan 21 2020 %C A331547 The sequence also includes 2881. Even though the complete factorization of 136!-1 is not known, 136 is not a term, since 136!-1 is known to be the product of 2 distinct primes and a composite number, so it has at least 4 prime factors and 3 distinct prime factors, thus the number of divisors >= 12, whereas 136 has 8 divisors. - _Chai Wah Wu_, Feb 26 2020 %C A331547 Similar reasoning (considering only small prime factors of k! - 1) shows that the next terms (> a(12) = 152) can only be within the set {154, 160, 162, 164, 176, 180, 182, 186, 187, 188, 192, 195, 196, 198, 204, ...}. - _M. F. Hasler_, Feb 26 2020 %H A331547 factordb.com, <a href="http://factordb.com/index.php?query=154%21-1">Status of 154!-1</a>. %F A331547 A331547 = { n > 1 | A000005(n) = A064145(n) }. - _M. F. Hasler_, Feb 26 2020 %t A331547 Select[Range[50], DivisorSigma[0, #] - DivisorSigma[0, Factorial[#] - 1] == 0 &] %o A331547 (PARI) isok(k) = k>1 && numdiv(k)==numdiv(k!-1); \\ _Jinyuan Wang_, Jan 20 2020 %o A331547 (PARI) {is(n)=my(f); n>2&& numdiv(n)>=numdiv(f=factor(n!-1,0))&& if( ispseudoprime(vecmax(f[,1])), numdiv(n)==numdiv(f), numdiv(n)<2*numdiv(f), 0, numdiv(n)==numdiv(n!-1))} \\ Avoids complete factorization if possible. - _M. F. Hasler_, Feb 26 2020 %Y A331547 Supersequence of A103317. %Y A331547 Cf. A000005, A002982, A064145. %K A331547 nonn,hard,more %O A331547 1,1 %A A331547 _Matthew Niemiro_, Jan 20 2020 %E A331547 a(8)-a(9) from _Jinyuan Wang_, Jan 20 2020 %E A331547 a(10) from _Amiram Eldar_, Jan 20 2020 %E A331547 a(11)-a(12) from _Chai Wah Wu_, Feb 26 2020