This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331556 #34 Mar 19 2023 03:35:01 %S A331556 5,9,14,99,52,89,100,407,268,10769,10890,99,99,4400,8900,9890,10000, %T A331556 97625,1089,3584,99,629882,1099890,10989,926,890000,8491505,10890099, %U A331556 8229644,9999989,69923062,10890000,99099000,43337905,99990089,962943454,109890,454649691 %N A331556 The lower (or left) offset of a 196-iterate (A006960) from the largest palindrome less than the iterate. %C A331556 When normalized over (0,1) by their respective palindrome-free interval about a 196-iterate, it has been empirically observed that the frequency distribution of this sequence appears to be quite symmetric about 0.5, as well as fractal when plotting the distribution over decreasing bin sizes. %C A331556 The 196-iterates referred to here come from the reverse-and-add process generating A006960. %F A331556 a(n) = A331560(n) - A331557(n). %e A331556 The first term is 5 since 196-191 = 5 %e A331556 The second term is 9 since 887-878 = 9, etc. %t A331556 Map[Block[{k = # - 1}, While[k != IntegerReverse@ k, k--]; # - k] &, NestList[# + IntegerReverse[#] &, 196, 25]] (* brute force, or *) %t A331556 Map[# - Block[{n = #, w, len, ww}, w = IntegerDigits[n]; len = Length@ w; ww = Take[w, Ceiling[len/2] ]; If[# < n, #, FromDigits@ Flatten@{#, If[OddQ@ len, Reverse@ Most@ #, Reverse@ #]} &@ If[Last@ ww == 0, MapAt[# - 1 &, Most@ ww, -1]~Join~{9}, MapAt[# - 1 &, ww, -1]]] &@ FromDigits@ Flatten@ {ww, If[OddQ@ len, Reverse@ Most@ ww, Reverse@ ww]}] &, NestList[# + IntegerReverse[#] &, 196, 37]] (* _Michael De Vlieger_, Jan 22 2020 *) %o A331556 (Python) %o A331556 # Slow Brute-force %o A331556 n = 196 %o A331556 while n < 10**15: %o A331556 m = n %o A331556 while m != int(str(m)[::-1]): m+=-1 %o A331556 print(n-m, end=', ') %o A331556 n = n + int(str(n)[::-1]) %Y A331556 Cf. A006960, A331557, A331560. %K A331556 nonn,base %O A331556 1,1 %A A331556 _James D. Klein_, Jan 20 2020 %E A331556 More terms from _Michael De Vlieger_, Jan 22 2020