This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331567 #16 Jan 25 2020 17:55:07 %S A331567 1,1,1,1,1,1,1,3,0,1,1,13,6,0,1,1,75,120,0,0,1,1,541,6174,1104,0,0,1, %T A331567 1,4683,449520,413088,5040,0,0,1,1,47293,49686726,329520720,18481080, %U A331567 0,0,0,1,1,545835,7455901320,491236986720,179438982360,522481680,0,0,0,1 %N A331567 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of distinct nonzero rows with n ones in every column. %H A331567 Andrew Howroyd, <a href="/A331567/b331567.txt">Table of n, a(n) for n = 0..209</a> %F A331567 A(n,k) = 0 for k > 0, n > 2^(k-1). %F A331567 A(2^(k-1), k) = (2^k-1)! for k > 0. %F A331567 A331643(n) = Sum_{d|n} A(n/d, d). %e A331567 Array begins: %e A331567 =============================================================== %e A331567 n\k | 0 1 2 3 4 5 6 %e A331567 ----+---------------------------------------------------------- %e A331567 0 | 1 1 1 1 1 1 1 ... %e A331567 1 | 1 1 3 13 75 541 4683 ... %e A331567 2 | 1 0 6 120 6174 449520 49686726 ... %e A331567 3 | 1 0 0 1104 413088 329520720 491236986720 ... %e A331567 4 | 1 0 0 5040 18481080 179438982360 3785623968170400 ... %e A331567 5 | 1 0 0 0 522481680 70302503250720 ... %e A331567 6 | 1 0 0 0 7875584640 ... %e A331567 ... %e A331567 The A(2,2) = 6 matrices are: %e A331567 [1 1] [1 1] [1 0] [1 0] [0 1] [0 1] %e A331567 [1 0] [0 1] [1 1] [0 1] [1 1] [1 0] %e A331567 [0 1] [1 0] [0 1] [1 1] [1 0] [1 1] %o A331567 (PARI) %o A331567 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} %o A331567 D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)} %o A331567 T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); } %Y A331567 Rows n=1..3 are A000670, A331640, A331641. %Y A331567 Column k=5 is A331642. %Y A331567 Cf. A188445, A330942, A331568, A331569, A331571, A331643. %K A331567 nonn,tabl %O A331567 0,8 %A A331567 _Andrew Howroyd_, Jan 20 2020