cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331573 The bottom entry in the forward difference table of the Euler totient function phi for 1..n.

This page as a plain text file.
%I A331573 #25 Oct 03 2022 04:46:20
%S A331573 1,0,1,-2,5,-14,39,-102,247,-558,1197,-2494,5167,-10850,23311,-51132,
%T A331573 113333,-250694,547871,-1175998,2475153,-5117486,10439895,-21142030,
%U A331573 42777735,-86960284,178221401,-368541508,767762191,-1606535062,3365499467,-7038925364,14671422797,-30450115592
%N A331573 The bottom entry in the forward difference table of the Euler totient function phi for 1..n.
%C A331573 a(2n) is a nonpositive even number while a(2n-1) is an odd positive number.
%C A331573 Abs(a(n)) < abs(a(n+1)) for 1 < n < 8000.
%F A331573 a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n-1,k-1)*phi(k). - _Ridouane Oudra_, Aug 21 2021
%F A331573 a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k)*A002088(k). - _Ridouane Oudra_, Oct 02 2022
%e A331573 a(8) = -102 because:
%e A331573 1     1     2     2     4     2     6     4  (first 8 terms of A000010)
%e A331573    0     1     0     2    -2     4    -2     (first 7 terms of A057000)
%e A331573       1    -1     2    -4     6     6
%e A331573         -2     3    -6    10   -12
%e A331573             5    -9    16   -22
%e A331573              -14    25   -38
%e A331573                  39   -63
%e A331573                   -102
%e A331573 The first principal right descending diagonal is this sequence.
%t A331573 f[n_] := Differences[ Array[ EulerPhi, n], n -1][[1]]; Array[f, 34] (* or *)
%t A331573 nmx = 34; Join[ {1}, Differences[ Array[ EulerPhi, nmx], #][[1]] & /@ Range[nmx - 1]]
%Y A331573 Cf. A187202, A000010, A057000.
%Y A331573 Cf. A002088.
%K A331573 sign
%O A331573 1,4
%A A331573 _Robert G. Wilson v_, Jan 20 2020