This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331573 #25 Oct 03 2022 04:46:20 %S A331573 1,0,1,-2,5,-14,39,-102,247,-558,1197,-2494,5167,-10850,23311,-51132, %T A331573 113333,-250694,547871,-1175998,2475153,-5117486,10439895,-21142030, %U A331573 42777735,-86960284,178221401,-368541508,767762191,-1606535062,3365499467,-7038925364,14671422797,-30450115592 %N A331573 The bottom entry in the forward difference table of the Euler totient function phi for 1..n. %C A331573 a(2n) is a nonpositive even number while a(2n-1) is an odd positive number. %C A331573 Abs(a(n)) < abs(a(n+1)) for 1 < n < 8000. %F A331573 a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n-1,k-1)*phi(k). - _Ridouane Oudra_, Aug 21 2021 %F A331573 a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k)*A002088(k). - _Ridouane Oudra_, Oct 02 2022 %e A331573 a(8) = -102 because: %e A331573 1 1 2 2 4 2 6 4 (first 8 terms of A000010) %e A331573 0 1 0 2 -2 4 -2 (first 7 terms of A057000) %e A331573 1 -1 2 -4 6 6 %e A331573 -2 3 -6 10 -12 %e A331573 5 -9 16 -22 %e A331573 -14 25 -38 %e A331573 39 -63 %e A331573 -102 %e A331573 The first principal right descending diagonal is this sequence. %t A331573 f[n_] := Differences[ Array[ EulerPhi, n], n -1][[1]]; Array[f, 34] (* or *) %t A331573 nmx = 34; Join[ {1}, Differences[ Array[ EulerPhi, nmx], #][[1]] & /@ Range[nmx - 1]] %Y A331573 Cf. A187202, A000010, A057000. %Y A331573 Cf. A002088. %K A331573 sign %O A331573 1,4 %A A331573 _Robert G. Wilson v_, Jan 20 2020