This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331581 #7 May 09 2020 07:24:18 %S A331581 0,1,2,1,3,2,1,4,3,2,2,1,5,4,3,3,2,2,1,6,5,4,4,3,3,3,2,2,2,1,7,6,5,5, %T A331581 4,4,4,3,3,3,3,2,2,2,1,8,7,6,6,5,5,5,4,4,4,4,4,3,3,3,3,3,2,2,2,2,1,9, %U A331581 8,7,7,6,6,6,5,5,5,5,5,4,4,4,4,4,4,3,3,3,3,3,3,3,2,2,2,2,1 %N A331581 Maximum part of the n-th integer partition in graded reverse-lexicographic order (A080577); a(1) = 0. %C A331581 The first partition ranked by A080577 is (); there is no zeroth partition. %H A331581 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A331581 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A331581 a(n) = A061395(A129129(n - 1)). %e A331581 The sequence of all partitions in graded reverse-lexicographic order begins as follows. The terms are the initial parts. %e A331581 () (3,2) (2,1,1,1,1) (2,2,1,1,1) %e A331581 (1) (3,1,1) (1,1,1,1,1,1) (2,1,1,1,1,1) %e A331581 (2) (2,2,1) (7) (1,1,1,1,1,1,1) %e A331581 (1,1) (2,1,1,1) (6,1) (8) %e A331581 (3) (1,1,1,1,1) (5,2) (7,1) %e A331581 (2,1) (6) (5,1,1) (6,2) %e A331581 (1,1,1) (5,1) (4,3) (6,1,1) %e A331581 (4) (4,2) (4,2,1) (5,3) %e A331581 (3,1) (4,1,1) (4,1,1,1) (5,2,1) %e A331581 (2,2) (3,3) (3,3,1) (5,1,1,1) %e A331581 (2,1,1) (3,2,1) (3,2,2) (4,4) %e A331581 (1,1,1,1) (3,1,1,1) (3,2,1,1) (4,3,1) %e A331581 (5) (2,2,2) (3,1,1,1,1) (4,2,2) %e A331581 (4,1) (2,2,1,1) (2,2,2,1) (4,2,1,1) %e A331581 Triangle begins: %e A331581 0 %e A331581 1 %e A331581 2 1 %e A331581 3 2 1 %e A331581 4 3 2 2 1 %e A331581 5 4 3 3 2 2 1 %e A331581 6 5 4 4 3 3 3 2 2 2 1 %e A331581 7 6 5 5 4 4 4 3 3 3 3 2 2 2 1 %e A331581 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1 %t A331581 revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]]; %t A331581 Prepend[First/@Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,8}],0] %Y A331581 Row lengths are A000041. %Y A331581 Lexicographically ordered reversed partitions are A026791. %Y A331581 Reverse-colexicographically ordered partitions are A026792. %Y A331581 Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036. %Y A331581 The version for compositions is A065120 or A333766. %Y A331581 Reverse-lexicographically ordered partitions are A080577. %Y A331581 Distinct parts of these partitions are counted by A115623. %Y A331581 Lexicographically ordered partitions are A193073. %Y A331581 Colexicographically ordered partitions are A211992. %Y A331581 Lengths of these partitions are A238966. %Y A331581 Cf. A036037, A048793, A063008, A066099, A129129, A185974, A228100, A228531, A334301, A334434, A334436, A334438. %K A331581 nonn,tabf %O A331581 1,3 %A A331581 _Gus Wiseman_, May 08 2020