This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331586 #8 Jan 21 2020 20:40:26 %S A331586 174,398,474,934,1214,1934,2254,2638,2966,3806,3886,4024,4574,4696, %T A331586 4718,4928,4958,4990,5014,5246,5290,5438,6698,6934,7028,7136,7258, %U A331586 7266,7424,7694,7838,8176,8448,8574,8720,8958,9854,9974,10174,10334,10448,11338,11374,12094,12102,12220,12462,12626 %N A331586 Even numbers n such that A048633(n+1) = A048633(n). %C A331586 binomial(2k+1,k)/binomial(2k,k) = (2k+1)/(k+1), so 2k is a member if and only if every prime dividing 2k+1 divides binomial(2k,k) and every prime dividing k+1 divides binomial(2k+1,k). %C A331586 A048633(n+1)=A048633(n) for all odd numbers n except the Mersenne numbers (A000225). %H A331586 Robert Israel, <a href="/A331586/b331586.txt">Table of n, a(n) for n = 1..10000</a> %e A331586 a(1)=174 is a member because 174 is even and A048633(174)=A048633(175)=632127493640977953733428652337034082437215015190. %p A331586 g:= proc(m,n,p) %p A331586 local Lm, Ln; %p A331586 Lm:= convert(m,base,p); %p A331586 Ln:= convert(n,base,p); %p A331586 min(Lm[1..nops(Ln)]-Ln) < 0 %p A331586 end proc: %p A331586 filter:= proc(n) local p; %p A331586 for p in numtheory:-factorset(n+1) do %p A331586 if not g(n,n/2,p) then return false fi; %p A331586 od; %p A331586 for p in numtheory:-factorset(n/2+1) do %p A331586 if not g(n+1,n/2,p) then return false fi %p A331586 od; %p A331586 true %p A331586 end proc: %p A331586 select(filter, [seq(i,i=2..15000,2)]); %Y A331586 Cf. A000225, A048633. %K A331586 nonn %O A331586 1,1 %A A331586 _Robert Israel_, Jan 21 2020