cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331590 Square array A(n,k) = A225546(A225546(n) * A225546(k)), n >= 1, k >= 1, read by descending antidiagonals.

This page as a plain text file.
%I A331590 #25 Feb 16 2025 08:33:59
%S A331590 1,2,2,3,3,3,4,6,6,4,5,8,5,8,5,6,10,12,12,10,6,7,5,15,9,15,5,7,8,14,
%T A331590 10,20,20,10,14,8,9,12,21,24,7,24,21,12,9,10,18,24,28,30,30,28,24,18,
%U A331590 10,11,15,27,18,35,15,35,18,27,15,11,12,22,30,36,40,42,42,40,36,30,22,12,13,24,33,40,45,20,11,20,45,40,33,24,13
%N A331590 Square array A(n,k) = A225546(A225546(n) * A225546(k)), n >= 1, k >= 1, read by descending antidiagonals.
%C A331590 As a binary operation, this sequence defines a commutative monoid over the positive integers that is isomorphic to multiplication. The self-inverse permutation A225546(.) provides an isomorphism. This monoid therefore has unique factorization. Its primes are the even terms of A050376: 2, 4, 16, 256, ..., which in standard integer multiplication are the powers of 2 with powers of 2 as exponents.
%C A331590 In this monoid, in contrast, the powers of 2 run through the squarefree numbers, the k-th power of 2 being A019565(k). 4 is irreducible and its powers are the squares of the squarefree numbers, the k-th power of 4 being A019565(k)^2 (where "^2" denotes standard integer squaring); and so on with powers of 16, 256, ...
%C A331590 In many cases the product of two numbers is the same here as in standard integer multiplication. See the formula section for details.
%H A331590 Antti Karttunen, <a href="/A331590/b331590.txt">Antidiagonals n = 1..144, flattened</a>
%H A331590 Antti Karttunen, <a href="/A331590/a331590.txt">Data supplement: n, a(n) computed for n = 1..80200; (antidiagonals n = 1..400)</a>
%H A331590 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Monoid.html">Monoid</a>
%F A331590 Alternative definition: A(n,1) = n; A(n,k) = A(A059897(n,k), A003961(A059895(n,k))).
%F A331590 Main derived identities: (Start)
%F A331590 A(n,k) = A(k,n).
%F A331590 A(1,n) = n.
%F A331590 A(n, A(m,k)) = A(A(n,m), k).
%F A331590 A(m,m) = A003961(m).
%F A331590 A(n^2, k^2) = A(n,k)^2.
%F A331590 A(A003961(n), A003961(k)) = A003961(A(n,k)).
%F A331590 A(A019565(n), A019565(k)) = A019565(n+k).
%F A331590 (End)
%F A331590 Characterization of conditions for A(n,k) = n * k: (Start)
%F A331590 The following 4 conditions are equivalent:
%F A331590 (1) A(n,k) = n * k;
%F A331590 (2) A(n,k) = A059897(n,k);
%F A331590 (3) A(n,k) = A059896(n,k);
%F A331590 (4) A059895(n,k) = 1.
%F A331590 If gcd(n,k) = 1, A(n,k) = n * k.
%F A331590 If gcd(n,k) = 1, A(A225546(n), A225546(k)) = A225546(n) * A225546(k).
%F A331590 The previous formula implies A(n,k) = n * k in the following cases:
%F A331590 (1) for n = A005117(m), k = j^2;
%F A331590 (2) more generally for n = A005117(m_1)^(2^i_1), k = A005117(m_2)^(2^i_2), with A004198(i_1, i_2) = 0.
%F A331590 (End)
%e A331590 From _Antti Karttunen_, Feb 02 2020: (Start)
%e A331590 The top left 16 X 16 corner of the array:
%e A331590    1,  2,  3,  4,  5,  6,   7,   8,   9,  10,  11,  12,  13,  14,  15,  16, ...
%e A331590    2,  3,  6,  8, 10,  5,  14,  12,  18,  15,  22,  24,  26,  21,  30,  32, ...
%e A331590    3,  6,  5, 12, 15, 10,  21,  24,  27,  30,  33,  20,  39,  42,   7,  48, ...
%e A331590    4,  8, 12,  9, 20, 24,  28,  18,  36,  40,  44,  27,  52,  56,  60,  64, ...
%e A331590    5, 10, 15, 20,  7, 30,  35,  40,  45,  14,  55,  60,  65,  70,  21,  80, ...
%e A331590    6,  5, 10, 24, 30, 15,  42,  20,  54,   7,  66,  40,  78,  35,  14,  96, ...
%e A331590    7, 14, 21, 28, 35, 42,  11,  56,  63,  70,  77,  84,  91,  22, 105, 112, ...
%e A331590    8, 12, 24, 18, 40, 20,  56,  27,  72,  60,  88,  54, 104,  84, 120, 128, ...
%e A331590    9, 18, 27, 36, 45, 54,  63,  72,  25,  90,  99, 108, 117, 126, 135, 144, ...
%e A331590   10, 15, 30, 40, 14,  7,  70,  60,  90,  21, 110, 120, 130, 105,  42, 160, ...
%e A331590   11, 22, 33, 44, 55, 66,  77,  88,  99, 110,  13, 132, 143, 154, 165, 176, ...
%e A331590   12, 24, 20, 27, 60, 40,  84,  54, 108, 120, 132,  45, 156, 168,  28, 192, ...
%e A331590   13, 26, 39, 52, 65, 78,  91, 104, 117, 130, 143, 156,  17, 182, 195, 208, ...
%e A331590   14, 21, 42, 56, 70, 35,  22,  84, 126, 105, 154, 168, 182,  33, 210, 224, ...
%e A331590   15, 30,  7, 60, 21, 14, 105, 120, 135,  42, 165,  28, 195, 210,  35, 240, ...
%e A331590   16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240,  81, ...
%e A331590 (End)
%o A331590 (PARI)
%o A331590 up_to = 1275;
%o A331590 A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
%o A331590 A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
%o A331590 A331590sq(x,y) = if(1==x,y,if(1==y,x, my(fx=factor(x),fy=factor(y),u=max(#binary(vecmax(fx[, 2])),#binary(vecmax(fy[, 2]))),prodsx=vector(u,x,1),m=1); for(i=1,u,for(k=1,#fx~, if(bitand(fx[k,2],m),prodsx[i] *= fx[k,1])); for(k=1,#fy~, if(bitand(fy[k,2],m),prodsx[i] *= fy[k,1])); m<<=1); prod(i=1,u,A019565(A048675(prodsx[i]))^(1<<(i-1)))));
%o A331590 A331590list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A331590sq(col,(a-(col-1))))); (v); };
%o A331590 v331590 = A331590list(up_to);
%o A331590 A331590(n) = v331590[n]; \\ _Antti Karttunen_, Feb 02 2020
%Y A331590 Isomorphic to A003991 with A225546 as isomorphism.
%Y A331590 Cf. A003961(main diagonal), A048675, A059895, A059896, A059897.
%Y A331590 Rows/columns, sorted in ascending order: 2: A000037, 3: A028983, 4: A252849.
%Y A331590 A019565 lists powers of 2 in order of increasing exponent.
%Y A331590 Powers of k, sorted in ascending order: k=2: A005117, k=3: A056911, k=4: A062503, k=5: A276378, k=6: intersection of A325698 and A005117, k=7: intersection of A007775 and A005117, k=8: A062838.
%Y A331590 Irreducibles are A001146 (even terms of A050376).
%K A331590 nonn,tabl
%O A331590 1,2
%A A331590 _Peter Munn_, Jan 21 2020