cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331610 Expansion of e.g.f.: exp(1 / (1 - tan(x)) - 1).

This page as a plain text file.
%I A331610 #13 Dec 12 2024 09:27:55
%S A331610 1,1,3,15,97,777,7379,80983,1007137,13986289,214383171,3593224767,
%T A331610 65347120705,1281151315641,26928292883795,603928982033863,
%U A331610 14392387319349697,363135896514611041,9669298448057196291,270932711729869233903,7967970654277850949025
%N A331610 Expansion of e.g.f.: exp(1 / (1 - tan(x)) - 1).
%H A331610 Robert Israel, <a href="/A331610/b331610.txt">Table of n, a(n) for n = 0..427</a>
%F A331610 E.g.f.: exp(sin(x) / (cos(x) - sin(x))).
%F A331610 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * 2^(k-1) * A000111(k) * a(n-k).
%F A331610 a(n) ~ 2^(2*n - 1/4) * exp(1/Pi - 1/2 + 2^(3/2)*sqrt(n/Pi) - n) * n^(n - 1/4) / Pi^(n + 1/4). - _Vaclav Kotesovec_, Jan 27 2020
%p A331610 S:= series(exp(1/(1-tan(x))-1), x, 31):
%p A331610 seq(coeff(S,x,i)*i!, i=0..30); # _Robert Israel_, Dec 10 2024
%t A331610 nmax = 20; CoefficientList[Series[Exp[1/(1 - Tan[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
%t A331610 A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] 2^(k - 1) A000111[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
%Y A331610 Cf. A000111, A000828, A003707, A004211, A006229, A331607.
%K A331610 nonn
%O A331610 0,3
%A A331610 _Ilya Gutkovskiy_, Jan 22 2020